Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (4): 1699-1714.DOI: 10.16085/j.issn.1000-6613.2020-1829
• Column: Advanced chemical equipment and intelligent systems engineering • Previous Articles Next Articles
ZHU Litao(), OUYANG Bo(), ZHANG Xibao, LUO Zhenghong()
Received:
2020-09-10
Online:
2021-04-14
Published:
2021-04-05
Contact:
LUO Zhenghong
通讯作者:
罗正鸿
作者简介:
朱礼涛(1991—),男,博士研究生,研究方向为反应器建模及机器学习。E-mail:基金资助:
CLC Number:
ZHU Litao, OUYANG Bo, ZHANG Xibao, LUO Zhenghong. Progress on application of machine learning to multiphase reactors[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1699-1714.
朱礼涛, 欧阳博, 张希宝, 罗正鸿. 机器学习在多相反应器中的应用进展[J]. 化工进展, 2021, 40(4): 1699-1714.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1829
1 | 卢春喜, 范怡平, 刘梦溪, 等. 催化裂化反应系统关键装备技术研究进展[J]. 石油学报(石油加工), 2018, 34(3): 441-454. |
LU Chunxi, FAN Yiping, LIU Mengxi, et al. Advances in key equipment technologies of reaction system in RFCC unit[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34(3): 441-454. | |
2 | 杨朝合, 杜玉朋, 赵辉. 催化裂化提升管反应器流动反应耦合模型研究进展[J]. 化工进展, 2015, 34(3): 608-616. |
YANG Chaohe, DU Yupeng, ZHAO Hui. Evolvement of flow-reaction models for fluid catalytic cracking riser reactors[J]. Chemical Industry and Engineering Progress, 2015, 34(3): 608-616. | |
3 | 吕林英, 蓝兴英, 吴迎亚, 等. FCC提升管反应器中颗粒聚团对裂化反应的影响[J]. 化工学报, 2015, 66(8): 2920-2928. |
Linying LÜ, LAN Xingying, WU Yingya, et al. Effect of particles cluster on behavior of catalytic cracking reaction in FCC riser[J]. CIESC Journal, 2015, 66(8): 2920-2928. | |
4 | 吕杜冰, 刘潇, 王涛, 等. 费托合成反应器应用研究进展及展望[J]. 洁净煤技术, 2016, 22(5): 35-40. |
Dubing LÜ, LIU Xiao, WANG Tao, et al. Progress and perspective of application research on Fischer-Tropsch synthesis reactor[J]. Clean Coal Technology, 2016, 22(5): 35-40. | |
5 | 张艳红, 白志山, 周萍, 等. 气液固三相浆态床反应器研究进展[J]. 化工进展, 2008, 27(10): 1551-1555. |
ZHANG Yanhong, BAI Zhishan, ZHOU Ping, et al. Studies in gas-liquid-solid slurry reactors[J]. Chemical Industry and Engineering Progress, 2008, 27(10): 1551-1555. | |
6 | 王垚, 狄佐星, 李玉新, 等. 用于甲醇制烯烃的非均相催化反应器评述[J]. 化工学报, 2014, 65(7): 2474-2484. |
WANG Yao, DI Zuoxing, LI Yuxin, et al. Multiphase catalytic reactors for methanol-to-olefins[J]. CIESC Journal, 2014, 65(7): 2474-2484. | |
7 | ZHU Litao, XIE Le, XIAO Jie, et al. Filtered model for the cold-model gas-solid flow in a large-scale MTO fluidized bed reactor[J]. Chemical Engineering Science, 2016, 143: 369-383. |
8 | LU Bona, ZHANG Jingyuan, LUO Hao, et al. Numerical simulation of scale-up effects of methanol-to-olefins fluidized bed reactors[J]. Chemical Engineering Science, 2017, 171: 244-255. |
9 | 谢乐, 罗正鸿. 自由基聚合反应器中多尺度流场的模拟进展[J]. 化工进展, 2019, 38(1): 72-79. |
XIE Le, LUO Zhenghong. Progress in simulation of the multiscale flow field in free radical polymerization reactors[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 72-79. | |
10 | 许超众, 冯连芳. 聚合过程强化技术的发展[J]. 化工进展, 2018, 37(4): 1314-1322. |
XU Chaozhong, FENG Lianfang. Process intensification technologies for polymerization[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1314-1322. | |
11 | VENKATASUBRAMANIAN V. The promise of artificial intelligence in chemical engineering: Is it here, finally?[J]. AIChE Journal, 2019, 65(2): 466-478. |
12 | 钱锋, 杜文莉, 钟伟民, 等. 石油和化工行业智能优化制造若干问题及挑战[J]. 自动化学报, 2017, 43(6): 893-901. |
QIAN Feng, DU Wenli, ZHONG Weimin, et al. Problems and challenges of smart optimization manufacturing in petrochemical industries[J]. Acta Automatica Sinica, 2017, 43(6): 893-901. | |
13 | 钱锋, 钟伟民, 杜文莉. 流程工业智能优化制造的基础理论与关键技术[J]. 工程, 2017, 3(2): 154-160. |
QIANG Feng, ZHONG Weimin, DU Wenli. Fundamental theories and key technologies for smart and optimal manufacturing in the process industry[J]. Engineering, 2017, 3(2): 154-160. | |
14 | 刘方, 徐龙, 马晓迅. BP神经网络的发展及其在化学化工中的应用[J]. 化工进展, 2019, 38(6): 2559-2573. |
LIU Fang, XU Long, MA Xiaoxun. Development of BP neural network and its application in chemistry and chemical engineering[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2559-2573. | |
15 | 苏鑫, 裴华健, 吴迎亚, 等. 应用经遗传算法优化的BP神经网络预测催化裂化装置焦炭产率[J]. 化工进展, 2016, 35(2): 389-396. |
SU Xin, PEI Huajian, WU Yingya, et al. Predicting coke yield of FCC unit using genetic algorithm optimized BP neural network[J]. Chemical Industry and Engineering Progress, 2016, 35(2): 389-396. | |
16 | 马思聪, 刘智攀. 神经网络全局势函数在多相催化中的应用[J]. 化工进展, 2020, 39(9): 3433-3443. |
MA Sicong, LIU Zhipan. Global neural network potential applications in heterogeneous catalysis[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3433-3443. | |
17 | 宋泓阳, 孙晓岩, 项曙光. 人工神经网络在化工过程中的应用进展[J]. 化工进展, 2016, 35(12): 3755-3762. |
SONG Hongyang, SUN Xiaoyan, XIANG Shuguang. Progress on the application of artificial neural network in chemical industry[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 3755-3762. | |
18 | 马双忱, 林宸雨, 周权, 等. 基于深度神经网络的脱硫系统预测模型及应用[J]. 化工进展, 2021, 40(3): 1689-1698. |
MA Shuangchen, LIN Chenyu, ZHOU Quan, et al. Prediction model of FGD system based on deep neural network and its application[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1689-1698. | |
19 | 翁润滢, 孙斌, 赵玉晓, 等. 基于自适应最优核和卷积神经网络的气液两相流流型识别方法[J]. 化工学报, 2018, 69(12): 5065-5072. |
WENG Runying, SUN Bin, ZHAO Yuxiao, et al. Flow pattern recognition method of gas-liquid two-phase flow based on adaptive optimal kernel and convolution neural network[J]. CIESC Journal, 2018, 69(12): 5065-5072. | |
20 | 周云龙, 张全厚, 邓艳秋. 基于PSO优化LS-SVM的气液两相流干度软测量[J]. 化工进展, 2013, 32(2): 295-298. |
ZHOU Yunlong, ZHANG Quanhou, DENG Yanqiu. Dryness of gas-liquid two-phase flow forecast based on the PSO-LS-SVM predictive model[J]. Chemical Industry and Engineering Progress, 2013, 32(2): 295-298. | |
21 | 曹玉苹, 卢霄, 田学民, 等. 基于动态单类随机森林的非线性过程监控方法[J]. 化工学报, 2017, 68(4): 1459-1465. |
CAO Yuping, LU Xiao, TIAN Xuemin, et al. Nonlinear process monitoring using dynamic one-class random forest[J]. CIESC Journal, 2017, 68(4): 1459-1465. | |
22 | ZHU Litao, TANG Jiaxun, LUO Zhenghong. Machine learning to assist filtered two-fluid model development for dense gas-particle flows[J]. AIChE Journal, 2020, 66(6): e16973. |
23 | 任喜伟, 何立风, 姚斌, 等. 油水界面测量过程中自适应阈值聚类优化算法[J]. 化工进展, 2019, 38(2): 779-789. |
REN Xiwei, HE Lifeng, YAO Bin, et al. Clustering optimization algorithm with adaptive threshold for oil-water interface detection process[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 779-789. | |
24 | BRUNTON S L, NOACK B R, KOUMOUTSAKOS P. Machine learning for fluid mechanics[J]. Annual Review of Fluid Mechanics, 2020, 52: 477-508. |
25 | LIU Xiaowen, GE Wei, WANG Limin. Scale and structure dependent drag in gas-olid flows[J]. AIChE Journal, 2020, 66(4): e16883. |
26 | ZHU Litao, LIU Yuanxing, LUO Zhenghong. An effective three-marker drag model via sub-grid modeling for turbulent fluidization[J]. Chemical Engineering Science, 2018, 192: 759-773. |
27 | ZHU Litao, RASHID T A B, LUO Zhenghong. Comprehensive validation analysis of sub-grid drag and wall corrections for coarse-grid two-fluid modeling[J]. Chemical Engineering Science, 2019, 196: 478-492. |
28 | ZHU Litao, LIU Yuanxing, TANG Jiaxun, et al. A material-property-dependent sub-grid drag model for coarse-grained simulation of 3D large-scale CFB risers[J]. Chemical Engineering Science, 2019, 204: 228-245. |
29 | ZHU Litao, YANG Yanan, PAN Detao, et al. Capability assessment of coarse-grid simulation of gas-particle riser flow using sub-grid drag closures[J]. Chemical Engineering Science, 2020, 213: 115410. |
30 | JIANG Yundi, KOLEHMAINEN J, GU Yile, et al. Neural-network-based filtered drag model for gas-particle flows[J]. Powder Technology, 2019, 346: 403-413. |
31 | GAO Xi, LI Tingwen, SARKAR A, et al. Development and validation of an enhanced filtered drag model for simulating gas-solid fluidization of Geldart A particles in all flow regimes[J]. Chemical Engineering Science, 2018, 184: 33-51. |
32 | ZHANG Yu, JIANG Ming, CHEN Xiao, et al. Modeling of the filtered drag force in gas-solid flows via a deep learning approach[J]. Chemical Engineering Science, 2020, 225: 115835. |
33 | YAN Shengnan, HE Yurong, TANG Tianqi, et al. Drag coefficient prediction for non-spherical particles in dense gas-solid two-phase flow using artificial neural network[J]. Powder Technology, 2019, 354: 115-124. |
34 | HE Long, TAFTI D K. A supervised machine learning approach for predicting variable drag forces on spherical particles in suspension[J]. Powder Technology, 2019, 345: 379-389. |
35 | NIKOLOPOULOS A, SAMLIS C, ZENELI M, et al. Introducing an artificial neural network energy minimization multi-scale drag scheme for fluidized particles[J]. Chemical Engineering Science, 2020, 229: 116013. |
36 | WANG Wei, LU Bona, GENG Jingwei, et al. Mesoscale drag modeling: a critical review[J]. Current Opinion in Chemical Engineering, 2020, 29: 96-103. |
37 | 杨宁, 李静海. 化学工程中的介尺度科学与虚拟过程工程: 分析与展望[J]. 化工学报, 2014, 65(7): 2403-2409. |
YANG Ning, LI Jinghai. Mesoscience in chemical engineering and virtual process engineering: analysis and perspective[J]. CIESC Journal, 2014, 65(7): 2403-2409. | |
38 | 徐骥, 卢利强, 葛蔚, 等. 基于EMMS范式的离散模拟及其化工应用[J]. 化工学报, 2016, 67(1): 14-26. |
XU Ji, LU Liqiang, GE Wei, et al. Discrete simulation based on EMMS paradigm and its applications in chemical engineering[J]. CIESC Journal, 2016, 67(1): 14-26. | |
39 | LING J, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807: 155-166. |
40 | 张伟伟, 朱林阳, 刘溢浪, 等. 机器学习在湍流模型构建中的应用进展[J]. 空气动力学学报, 2019, 37(3): 444-454. |
ZHANG Weiwei, ZHU Linyang, LIU Yilang, et al. Progresses in the application of machine learning in turbulence modeling[J]. Acta Aerodynamica Sinica, 2019, 37(3): 444-454. | |
41 | WU Jinlong, XIAO Heng, PATERSON E. Physics-informed machine learning approach for augmenting turbulence models: a comprehensive framework[J]. Physical Review Fluids, 2018, 3(7): 074602. |
42 | TRACEY B D, DURAISAMY K, ALONSO J J. A machine learning strategy to assist turbulence model development[C]// 53rd AIAA Aerospace Sciences Meeting, 2015: 1287. |
43 | 曹植珺, 肖昌润. 机器学习在船舶流体力学中的应用综述[C]//第十二届武汉地区船舶与海洋工程研究生学术论坛, 2019. |
CAO Zhijun, XIAO Changrun. Application of machine learning in ship hydrodynamics[C]// Proceedings of the 12th Wuhan Graduate Forum on Ship and Ocean Engineering, 2019. | |
44 | 尹宇辉, 杨普, 张宇飞. 基于机器学习的湍流建模研究[C]//中国力学大会, 2019. |
YIN Yuhui, YANG Pu, ZHANG Yufei. Turbulence modeling based on machine learning[C]// Proceedings of the Chinese Congress of Theoretical and Applied Mechanics (CCTAM 2019), 2019. | |
45 | BEETHAM S, FOX R O, CAPECELATRO J. Sparse identification of multiphase turbulence closures for coupled fluid--particle flows[J]. arXiv preprint arXiv:2004. 08997, 2020. |
46 | BEETHAM S, CAPECELATRO J. Formulating turbulence closures using sparse regression with embedded form invariance[J]. arXiv preprint arXiv:2003. 12884, 2020. |
47 | ROY C J, OBERKAMPF W L. A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(25/26/27/28): 2131-2144. |
48 | ROACHE P J. Quantification of uncertainty in computational fluid dynamics[J]. Annual Review of Fluid Mechanics, 1997, 29(1): 123-160. |
49 | 张楠, 沈泓萃, 姚惠之.阻力和流场的CFD不确定度分析探讨[J]. 船舶力学, 2008, 12(2): 211-224. |
ZHANG Nan, SHEN Hongcui, YAO Huizhi. CFD uncertainty analysis of drag force and flow field[J]. Ship Mechanics, 2008, 12(2): 211-224. | |
50 | 张涵信, 查俊. 关于CFD验证确认中的不确定度和真值估算[J]. 空气动力学学报, 2010, 28(1): 39. |
ZHANG Hanxing, ZHA Jun. Uncertainty and true value estimation in CFD validation[J]. Acta Aerodynamica Sinica, 2010, 28(1): 39. | |
51 | LIU Yang, SUN Xiaodong, DINH N T. Validation and uncertainty quantification of multiphase-CFD solvers: a data-driven Bayesian framework supported by high-resolution experiments[J]. Nuclear Engineering and Design, 2019, 354: 110200. |
52 | GEL A, LI Tingwen, GOPALAN B, et al. Validation and uncertainty quantification of a multiphase computational fluid dynamics model[J]. Industrial & Engineering Chemistry Research, 2013, 52(33): 11424-11435. |
53 | SYAMLAL M, CELIK I B, BENYAHIA S. Quantifying the uncertainty introduced by discretization and time-averaging in two-fluid model predictions[J]. AIChE Journal, 2017, 63(12): 5343-5360. |
54 | LANE W A, RYAN E M. Verification, validation, and uncertainty quantification of a sub-grid model for heat transfer in gas-particle flows with immersed horizontal cylinders[J]. Chemical Engineering Science, 2018, 176: 409-420. |
55 | KOTTEDA V M K, KOMMU A, KUMAR V. A data-driven framework for uncertainty quantification of a fluidized bed[C]// 2019 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 2019. DOI: 10.1109/HPEC.2019.8916467. |
56 | BAO Han, FENG Jinyong, DINH N, et al. Computationally efficient CFD prediction of bubbly flow using physics-guided deep learning[J]. International Journal of Multiphase Flow, 2020, 131: 103378. |
57 | ANSARI A, MOHAGHEGH S D, SHAHNAM M, et al. Modeling average pressure and volume fraction of a fluidized bed using data-driven smart proxy[J]. Fluids, 2019, 4(3): 123. |
58 | ANSARI A, MOHAGHEGH S, SHAHNAM M, et al. Data driven smart proxy for CFD application of big data analytics & machine learning in computational fluid dynamics (Ⅲ): Model building at the layer level[R]. National Energy Technology Lab. |
NETL), Pittsburgh, PA, and Morgantown, (United States) WV, 2018. | |
59 | 孙先亮, 李健, 韩哲哲, 等. 基于数据驱动的卷积神经网络电容层析成像图像重建[J]. 化工学报, 2020, 71(5): 2004-2016. |
SUN Xianliang, LI Jian, HAN Zhezhe, et al. Data-driven image reconstruction of electrical capacitance tomography based on convolutional neural network[J]. CIESC Journal, 2020, 71(5): 2004-2016. | |
60 | WANG Chao, LI Shaoshuo, YANG Yao, et al. On flow regime transition in trickle bed: development of a novel deep-learning-assisted image analysis method[J]. AIChE Journal, 2020, 66(2): e16833. |
61 | YADAV A, GAURAV T K, PANT H J, et al. Machine learning based position-rendering algorithms for radioactive particle tracking experimentation[J]. AIChE Journal, 2020, 66(6): e16954. |
62 | SHEN Chong, ZHENG Qibo, SHANG Minjiang, et al. Using deep learning to recognize liquid-liquid flow patterns in microchannels[J]. AIChE Journal, 2020, 66(8): e16260. |
63 | POLETAEV I, TOKAREV M P, PERVUNIN K S. Bubble patterns recognition using neural networks: application to the analysis of a two-phase bubbly jet[J]. International Journal of Multiphase Flow, 2020, 126: 103194. |
64 | NNABUIFE S G, KUANG Boyu, WHIDBORNE J F, et al. Non-intrusive classification of gas-liquid flow regimes in an S-shaped pipeline riser using a Doppler ultrasonic sensor and deep neural networks[J]. Chemical Engineering Journal, 2020, 403: 126401. |
65 | HAAS T, SCHUBERT C, EICKHOFF M, et al. BubCNN: bubble detection using faster RCNN and shape regression network[J]. Chemical Engineering Science, 2020, 216: 115467. |
66 | TORISAKI S, MIWA S. Robust bubble feature extraction in gas-liquid two-phase flow using object detection technique[J]. Journal of Nuclear Science and Technology, 2020, 57(11): 1231-1244. |
67 | 蔡声泽, 许超, 高琪, 等. 基于深度神经网络的粒子图像测速算法[J]. 空气动力学学报, 2019, 37(3): 455-461. |
CAI Shenze, XU Chao, GAO Qi, et al. Particle image velocimetry based on a deep neural network[J]. Acta Aerodynamica Sinica, 2019, 37(3): 455-461. | |
68 | HU Hongli, DONG J, ZHANG J, et al. Identification of gas/solid two-phase flow regimes using electrostatic sensors and neural-network techniques[J]. Flow Measurement and Instrumentation, 2011, 22(5): 482-487. |
69 | GUO Qiang, YE Mao, YANG Wuqiang, et al. A machine learning approach for electrical capacitance tomography measurement of gas-solid fluidized beds[J]. AIChE Journal, 2019, 65(6): e16583. |
70 | RAISSI M, YAZDANI A, KARNIADAKIS G E. Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations[J]. Science, 2020, 367(6481): 1026-1030. |
71 | TRAFALIS T B, OLADUNNI O, PAPAVASSILIOU D V. Two-phase flow regime identification with a multiclassification support vector machine (SVM) model[J]. Industrial & Engineering Chemistry Research, 2005, 44(12): 4414-4426. |
72 | ROSA E S, SALGADO R M, OHISHI T, et al. Performance comparison of artificial neural networks and expert systems applied to flow pattern identification in vertical ascendant gas-liquid flows[J]. International Journal of Multiphase Flow, 2010, 36(9): 738-754. |
73 | MANJREKAR O N, DUDUKOVIC M P. Identification of flow regime in a bubble column reactor with a combination of optical probe data and machine learning technique[J]. Chemical Engineering Science: X, 2019, 2: 100023. |
74 | MASK G, WU Xingru, LING Kegang. An improved model for gas-liquid flow pattern prediction based on machine learning[J]. Journal of Petroleum Science and Engineering, 2019, 183: 106370. |
75 | LIU Li, BAI Bofeng. Flow regime identification of swirling gas-liquid flow with image processing technique and neural networks[J]. Chemical Engineering Science, 2019, 199: 588-601. |
76 | BAR N, DAS S K. Prediction of flow regime for air-water flow in circular micro channels using ANN[J]. Procedia Technology, 2013, 10: 242-252. |
77 | ZHOU Haojie, NIU Xiaojing. An image processing algorithm for the measurement of multiphase bubbly flow using predictor-corrector method[J]. International Journal of Multiphase Flow, 2020, 128: 103277. |
78 | GANDHI A B, JOSHI J B, JAYARAMAN V K, et al. Development of support vector regression (SVR)-based correlation for prediction of overall gas hold-up in bubble column reactors for various gas-liquid systems[J]. Chemical Engineering Science, 2007, 62(24): 7078-7089. |
79 | GANDHI A B, JOSHI J B, KULKARNI A A, et al. SVR-based prediction of point gas hold-up for bubble column reactor through recurrence quantification analysis of LDA time-series[J]. International Journal of Multiphase Flow, 2008, 34(12): 1099-1107. |
80 | BANSAL S, ROY S, LARACHI F. Support vector regression models for trickle bed reactors[J]. Chemical Engineering Journal, 2012, 207: 822-831. |
81 | POURTOUSI M, SAHU J N, GANESAN P, et al. A combination of computational fluid dynamics (CFD) and adaptive neuro-fuzzy system (ANFIS) for prediction of the bubble column hydrodynamics[J]. Powder Technology, 2015, 274: 466-481. |
82 | AZIZI S, AWAD M M, AHMADLOO E. Prediction of water holdup in vertical and inclined oil-water two-phase flow using artificial neural network[J]. International Journal of Multiphase Flow, 2016, 80: 181-187. |
83 | 黄正梁, 王超, 李少硕, 等. 基于深度学习的气液固三相反应器图像分析方法及应用[J]. 化工学报, 2020, 71(1): 274-282. |
HUANG Zhengliang, WANG Chao, LI Shaoshuo, et al. Development and application of image analysis method based on deep-learning in gas-liquid-solid three-phase reactor[J]. CIESC Journal, 2020, 71(1): 274-282. | |
84 | SHABAN H, TAVOULARIS S. Measurement of gas and liquid flow rates in two-phase pipe flows by the application of machine learning techniques to differential pressure signals[J]. International Journal of Multiphase Flow, 2014, 67: 106-117. |
85 | CHEW J W, COCCO R A. Application of machine learning methods to understand and predict circulating fluidized bed riser flow characteristics[J]. Chemical Engineering Science, 2020, 217: 115503. |
86 | CHEW J W, COCCO R A. Do particle-related parameters influence circulating fluidized bed (CFB) riser flux and elutriation?[J]. Chemical Engineering Science, 2020, 227: 115935. |
87 | ZHANG Peng, YANG Yao, HUANG Zhengliang, et al. Machine learning assisted measurement of solid mass flow rate in horizontal pneumatic conveying by acoustic emission detection[J]. Chemical Engineering Science, 2020, 229: 116083. |
88 | GANDHI A B, JOSHI J B. Estimation of heat transfer coefficient in bubble column reactors using support vector regression[J]. Chemical Engineering Journal, 2010, 160(1): 302-310. |
89 | ZAIDI S. Novel application of support vector machines to model the two phase boiling heat transfer coefficient in a vertical tube thermosiphon reboiler[J]. Chemical Engineering Research and Design, 2015, 98: 44-58. |
90 | KOJIĆ P, OMORJAN R. Predicting hydrodynamic parameters and volumetric gas-liquid mass transfer coefficient in an external-loop airlift reactor by support vector regression[J]. Chemical Engineering Research and Design, 2017, 125: 398-407. |
91 | 方黄峰, 刘瑶瑶, 张文彪. 基于LSTM神经网络的流化床干燥器内生物质颗粒湿度预测[J]. 化工学报, 2020, 71(S1): 307-314. |
FANG Huangfeng, LIU Yaoyao, ZHANG Wenbiao. Prediction of biomass particle humidity in fluidized bed dryer based on LSTM neural network[J]. CIESC Journal, 2020, 71(S1): 307-314. | |
92 | SERRANO D, CASTELLÓ D. Tar prediction in bubbling fluidized bed gasification through artificial neural networks[J]. Chemical Engineering Journal, 2020, 402: 126229. |
93 | GUO Bing, LI Dingkai, CHENG Congming, et al. Simulation of biomass gasification with a hybrid neural network model[J]. Bioresource Technology, 2001, 76(2): 77-83. |
94 | CHAVAN P D, SHARMA T, MALL B K, et al. Development of data-driven models for fluidized-bed coal gasification process[J]. Fuel, 2012, 93: 44-51. |
95 | PATIL-SHINDE V, KULKARNI T, KULKARNI R, et al. Artificial intelligence-based modeling of high ash coal gasification in a pilot plant scale fluidized bed gasifier[J]. Industrial & Engineering Chemistry Research, 2014, 53(49): 18678-18689. |
96 | PANDEY D S, DAS S, PAN I, et al. Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor[J]. Waste Management, 2016, 58: 202-213. |
97 | JALALIFAR S, MASOUDI M, ABBASSI R, et al. A hybrid SVR-PSO model to predict a CFD-based optimised bubbling fluidised bed pyrolysis reactor[J]. Energy, 2020, 191: 116414. |
98 | ZHONG Hanbin, XIONG Qingang, YIN Lina, et al. CFD-based reduced-order modeling of fluidized-bed biomass fast pyrolysis using artificial neural network[J]. Renewable Energy, 2020, 152: 613-626. |
99 | 朱礼涛, 罗正鸿. 磁共振成像应用于多相流体动力学研究进展[J]. 化工学报, 2018, 69(9): 3765-3773. |
ZHU Litao, LUO Zhenghong. Application of magnetic resonance imaging to multiphase fluid hydrodynamics[J]. CIESC Journal, 2018, 69(9): 3765-3773. | |
100 | GRIEVES M, VICKERS J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex System[M]// KAHLEN F-J, FLUMERFELT S, ALVES A. Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches. Berlin: Springer-Verlag, 2017: 85-113. |
101 | 余斌, 朱伟佳. 石化行业数字孪生技术的应用探索[J]. 化工进展, 2019, 38(S1): 278-281. |
YU Bin, ZHU Weijia. Application exploration of digital twin technology in petrochemical industry[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 278-281. | |
102 | 陶飞, 张萌, 程江峰, 等. 数字孪生车间——一种未来车间运行新模式[J]. 计算机集成制造系统, 2017, 23(1): 1-9. |
TAO Fei, ZHANG Meng, CHENG Jiangfeng, et al. Digital twin workshop: a new paradigm for future workshop[J]. Computer Integrated Manufacturing Systems, 2017, 23(1): 1-9. | |
103 | TUEGEL E J, INGRAFFEA A R, EASON T G, et al. Reengineering aircraft structural life prediction using a digital twin[J]. International Journal of Aerospace Engineering, 2011, 2011: 154798. |
104 | MOLINARO R, SINGH J S, CATSOULIS S, et al. Embedding data analytics and CFD into the digital twin concept[J]. Computers & Fluids, 2020, 214: 104759. |
105 | LAKEHAL D, MOLINARO R. On the paradigm of combining data analytics and CFD[J]. AIP Conference Proceedings, 2020, 2293(1): 030035. |
106 | ZHOU Yu, XING Tong, SONG Yue, et al. Digital-twin-driven geometric optimization of centrifugal impeller with free-form blades for five-axis flank milling[J]. Journal of Manufacturing Systems, 2020. Doi: 10.1016/j.jmsy.2020.06.019. |
107 | GE Wei, WANG Wei, YANG Ning, et al. Meso-scale oriented simulation towards virtual process engineering (VPE)—The EMMS paradigm[J]. Chemical Engineering Science, 2011, 66(19): 4426-4458. |
108 | ZHU Litao, YE Mao, LUO Zhenghong. Application of filtered model for reacting gas-solid flows and optimization in a large-scale methanol-to-olefin fluidized-bed reactor[J]. Industrial & Engineering Chemistry Research, 2016, 55(46): 11887-11899. |
109 | LI Junsen, ZHU Litao, YAN Weicheng, et al. Coarse-grid simulations of full-loop gas-solid flows using a hybrid drag model: investigations on turbulence models[J]. Powder Technology, 2021, 379: 108-126. |
[1] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[2] | ZHANG Chengsong, ZHANG Jing, GONG Bin, LI Mingyang, YUAN Jiaxin, LI Hongye. Vibration characteristics of self-priming jet flexible impeller [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1728-1738. |
[3] | WANG Lu, ZHANG Lei, DU Jian. High-throughput screening of zeolite materials for CO2/N2 selective adsorption separation by machine learning [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 148-158. |
[4] | YANG Fengling, LIANG Guolin, ZHANG Cuixun, WANG Guichao. Drag reduction performance of a hydrophobic Rushton impeller [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4682-4690. |
[5] | ZHENG Peng, LI Weiling, GUO Yafei, SUN Jian, WANG Ruilin, ZHAO Chuanwen. Analysis of carbide slag accelerated carbonation in bubble column and response surface optimization [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1528-1538. |
[6] | ZHANG Tianhao, XU Haojie, WU Tianyi, LI Bufa, WANG Junfeng. Numerical simulation of evaporation and internal flow of substrate droplet under electric field [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 609-618. |
[7] | WEN Fengshuo, LIU Shaoshuai, WU Wenting, SONG Jiantang, ZHU Haifeng, JIANG Zhenhua, WU Yinong. Comparison of pure stainless steel wire mesh and mixed HoCu2 particle as regenerator material at 10—30K [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 113-119. |
[8] | LIAN Cheng, CHENG Jin, HUANG Pan, TAO Haolan, YANG Jie, LIU Honglai. Thermodynamics of new energy chemical engineering [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4711-4733. |
[9] | ZHANG Mengxuan, LIU Hongchen, WANG Min, LAN Xingying, SHI Xiaogang, GAO Jinsen. Intelligence hybrid modeling method and applications in chemical process [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1765-1776. |
[10] | YANG Jie, CHANG Hui, SUI Zhijun, ZHU Kake, ZHU Yi’an, ZHOU Xinggui. Advances in chemical looping methane oxidation [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1928-1947. |
[11] | REN Siyuan, LIU Chunjiang, GUO Kai, LIU Hui, XIANG Wenyu, XIE Chungang, LI Xue. Experiments and simulation of hydraulic jump of non-central impinging jet on rotating disk [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6027-6034. |
[12] | Kai WANG, Cuihong NAN, Jinling LU. Mechanism of hydrodynamic process in flow corrosion behavior [J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 8-18. |
[13] | Sicong MA, Zhipan LIU. Global neural network potential applications in heterogeneous catalysis [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3433-3443. |
[14] | Tianyang LI,Hang AN,Yue LI,Christophe REHMET,Yan CHENG,Yi CHENG. Numerical simulation of methane pyrolysis to acetylene viathermal plasma [J]. Chemical Industry and Engineering Progress, 2019, 38(08): 3572-3582. |
[15] | Shaolin WU, Wenwen LIU, Zhenhuan WEI, Ying CHEN, Dong ZHANG. Effects of sludge discharge stage on SBBR biofilm cultivation [J]. Chemical Industry and Engineering Progress, 2019, 38(02): 1134-1139. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |