Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (12): 6916-6924.DOI: 10.16085/j.issn.1000-6613.54-化工进展2021-0033
• Resources and environmental engineering • Previous Articles Next Articles
XIAO Haiping1(), LI Xinyao1(), JIANG Yanfei1, YAN Dahai2, LIU Zhong1
Received:
2021-01-07
Revised:
2021-04-03
Online:
2021-12-21
Published:
2021-12-05
Contact:
LI Xinyao
肖海平1(), 李昕耀1(), 蒋炎飞1, 闫大海2, 刘忠1
通讯作者:
李昕耀
作者简介:
肖海平(1978—),男,博士,副教授,研究方向为燃煤污染物排放机理与控制。E-mail:基金资助:
CLC Number:
XIAO Haiping, LI Xinyao, JIANG Yanfei, YAN Dahai, LIU Zhong. Migration characteristics of chromium and arsenic during co-processing of antibiotic residue in a pulverized coal fired boiler[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6916-6924.
肖海平, 李昕耀, 蒋炎飞, 闫大海, 刘忠. 煤粉炉协同共处理抗生素药渣Cr、As的迁移特性[J]. 化工进展, 2021, 40(12): 6916-6924.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.54-化工进展2021-0033
项目 | 药渣 | 原煤 | 药渣煤 |
---|---|---|---|
水分Mar/% | 8.4 | 12.2 | 11.85 |
灰分Aar/% | 14.16 | 28.97 | 27.62 |
挥发分Var/% | 65.6 | 18.88 | 23.13 |
固定碳FCar/% | 11.84 | 39.95 | 37.40 |
发热量Qnet.ar/MJ·kg-1 | 15.69 | 17.738 | 17.55 |
项目 | 药渣 | 原煤 | 药渣煤 |
---|---|---|---|
水分Mar/% | 8.4 | 12.2 | 11.85 |
灰分Aar/% | 14.16 | 28.97 | 27.62 |
挥发分Var/% | 65.6 | 18.88 | 23.13 |
固定碳FCar/% | 11.84 | 39.95 | 37.40 |
发热量Qnet.ar/MJ·kg-1 | 15.69 | 17.738 | 17.55 |
原料 | 汞 | 镉 | 铅 | 砷 | 铬 | 铜 | 镍 | 锡 | 锑 | 锰 |
---|---|---|---|---|---|---|---|---|---|---|
药渣 | 0.048 | 0.18 | 7.0 | 146.52 | 200.2 | 7.64 | 6.25 | 1.03 | 0.67 | 97.5 |
原煤 | 0.0734 | 0.287 | 7.188 | 23.21 | 34.54 | 6.73 | 8.013 | 2.136 | 0.3754 | 105.77 |
原料 | 汞 | 镉 | 铅 | 砷 | 铬 | 铜 | 镍 | 锡 | 锑 | 锰 |
---|---|---|---|---|---|---|---|---|---|---|
药渣 | 0.048 | 0.18 | 7.0 | 146.52 | 200.2 | 7.64 | 6.25 | 1.03 | 0.67 | 97.5 |
原煤 | 0.0734 | 0.287 | 7.188 | 23.21 | 34.54 | 6.73 | 8.013 | 2.136 | 0.3754 | 105.77 |
工况 | 输入项/t·h-1 | 输出项 | ||||
---|---|---|---|---|---|---|
药渣 | 原煤 | 炉渣 | 飞灰 /t·h-1 | 脱硫石膏 /t·h-1 | 烟气实测流量 /m3·h-1 | |
协同 | 10.16 | 101.62 | 2.25 | 20.28 | 9.8 | 7.92×105 |
空白 | — | 109.69 | 2.28 | 20.55 | 10.2 | 7.95×105 |
工况 | 输入项/t·h-1 | 输出项 | ||||
---|---|---|---|---|---|---|
药渣 | 原煤 | 炉渣 | 飞灰 /t·h-1 | 脱硫石膏 /t·h-1 | 烟气实测流量 /m3·h-1 | |
协同 | 10.16 | 101.62 | 2.25 | 20.28 | 9.8 | 7.92×105 |
空白 | — | 109.69 | 2.28 | 20.55 | 10.2 | 7.95×105 |
元素 | R1(协同)/% | R0(空白)/% |
---|---|---|
Cr | 96.1 | 88.1 |
As | 75.8 | 76.5 |
元素 | R1(协同)/% | R0(空白)/% |
---|---|---|
Cr | 96.1 | 88.1 |
As | 75.8 | 76.5 |
工况 | 输入项/% | 输出项/% | ||||
---|---|---|---|---|---|---|
原煤 | 药渣 | 炉渣 | 飞灰 | 石膏 | 烟气 | |
协同 | 63.3 | 36.7 | 1.28 | 92.73 | 2.00 | 0.13 |
空白 | 100 | — | 2.01 | 83.79 | 2.14 | 0.18 |
工况 | 输入项/% | 输出项/% | ||||
---|---|---|---|---|---|---|
原煤 | 药渣 | 炉渣 | 飞灰 | 石膏 | 烟气 | |
协同 | 63.3 | 36.7 | 1.28 | 92.73 | 2.00 | 0.13 |
空白 | 100 | — | 2.01 | 83.79 | 2.14 | 0.18 |
工况 | 输入项/% | 输出项/% | ||||
---|---|---|---|---|---|---|
原煤 | 药渣 | 炉渣 | 飞灰 | 石膏 | 烟气 | |
协同 | 61.3 | 38.7 | 1.32 | 49.83 | 24.64 | 0.011 |
空白 | 100 | — | 1.42 | 50.65 | 24.42 | 0.008 |
工况 | 输入项/% | 输出项/% | ||||
---|---|---|---|---|---|---|
原煤 | 药渣 | 炉渣 | 飞灰 | 石膏 | 烟气 | |
协同 | 61.3 | 38.7 | 1.32 | 49.83 | 24.64 | 0.011 |
空白 | 100 | — | 1.42 | 50.65 | 24.42 | 0.008 |
元素 | 工况 | 烟气浓度/μg·m-3 | 发电排放量 /×10-3lb·GWh-1 | ||
---|---|---|---|---|---|
颗粒态 | 气态 | 总浓度 | |||
Cr | 空白 | 0.75 | — | 0.75 | 5.36 |
协同 | 0.89 | — | 0.89 | 6.43 | |
As | 空白 | 0.35 | 0.011 | 0.361 | 2.58 |
协同 | 0.34 | 0.05 | 0.39 | 2.82 |
元素 | 工况 | 烟气浓度/μg·m-3 | 发电排放量 /×10-3lb·GWh-1 | ||
---|---|---|---|---|---|
颗粒态 | 气态 | 总浓度 | |||
Cr | 空白 | 0.75 | — | 0.75 | 5.36 |
协同 | 0.89 | — | 0.89 | 6.43 | |
As | 空白 | 0.35 | 0.011 | 0.361 | 2.58 |
协同 | 0.34 | 0.05 | 0.39 | 2.82 |
项目 | 炉渣 | 飞灰 | 石膏 | |||||
---|---|---|---|---|---|---|---|---|
协同 | 空白 | 协同 | 空白 | 协同 | 空白 | |||
Cr浓度/mg?L-1 | 0.413 | 0.065 | 0.568 | 0.113 | 0.002 | 0.003 | ||
As浓度/mg?L-1 | 0.0142 | 0.0036 | 0.0109 | 0.0113 | 0.0081 | 0.0069 |
项目 | 炉渣 | 飞灰 | 石膏 | |||||
---|---|---|---|---|---|---|---|---|
协同 | 空白 | 协同 | 空白 | 协同 | 空白 | |||
Cr浓度/mg?L-1 | 0.413 | 0.065 | 0.568 | 0.113 | 0.002 | 0.003 | ||
As浓度/mg?L-1 | 0.0142 | 0.0036 | 0.0109 | 0.0113 | 0.0081 | 0.0069 |
12 | Ministry of Environmental Protection of the People’s Republic of China. Environmental protection standard of the People’s Republic of China: solid waste-determination of metals-inductively coupled plasma mass spectrometry (ICP-MS). [S]. Beijing: China Environment Science Press, 2015. |
13 | 国家环境保护总局. 中华人民共和国推荐性国家标准: 固定污染源排气中颗粒物测定与气态污染物采样方法[S]. 1996. |
State Environmental Protection Administration of the People’s Republic of China. National standard (recommended) of the People’s Republic of China: the determination of particulates and sampling methods of gaseous pollutants emitted from exhaust gas of stationary source. [S]. 1996. | |
14 | 中华人民共和国环境保护部. 中华人民共和国环保行业标准: 空气和废气 颗粒物中铅等金属元素的测定 电感耦合等离子体质谱法[S]. 北京: 中国环境科学出版社, 2013. |
Ministry of Environmental Protection of the People’s Republic of China. Environmental protection standard of the People’s Republic of China: ambient air and stationary source emission - Determination of metals in ambient particulate matter-inductively coupled plasma/mass spectrometry (ICP-MS). [S]. Beijing: China Environment Science Press, 2013. | |
15 | 国家环境保护总局. 中华人民共和国环保行业标准: 固体废物 浸出毒性浸出方法 硫酸硝酸法[S]. 北京: 中国环境科学出版社, 2007. |
State Environmental Protection Administration of the People’s Republic of China. Environmental protection standard of the People’s Republic of China: solid waste-extraction procedure for leaching toxicity-sulphuric acid & nitric acid method. [S]. Beijing: China Environment Science Press, 2007. | |
16 | XU M H, YAN R, ZHENG C G, et al. Status of trace element emission in a coal combustion process: a review[J]. Fuel Processing Technology, 2004, 85(2/3): 215-237. |
1 | 中华人民共和国生态环境部. 2019年全国大、中城市固体废物污染环境防治年报[R].北京.2019. |
Ministry of Ecology and Environment of the People’s Republic of China. 2019 National annual report on the prevention and control of solid waste pollution in large and medium cities[R]. Beijing. MEE. 2019. | |
17 | HUANG Y J, JIN B S, ZHONG Z P, et al. Trace elements (Mn, Cr, Pb, Se, Zn, Cd and Hg) in emissions from a pulverized coal boiler[J]. Fuel Processing Technology, 2004, 86(1): 23-32. |
18 | 李立园, 汤泉, 郑刘根, 等. 不同燃烧温度下煤中铬迁移和释放特性[J]. 环境化学, 2018, 37(3): 437-444. |
2 | 中华人民共和国生态环境部. 国家危险废物名录[EB/OL]. 2020.. |
Ministry of Ecology and Environment of the People’s Republic of China. National hazardous waste list[EB/OL]. 2020. . | |
18 | LI Liyuan, TANG Quan, ZHENG Liugen, et al. Migration and volatilization of chromium in coal under different combustion temperatures[J]. Environmental Chemistry, 2018, 37(3): 437-444. |
19 | GALBREATH K C, ZYGARLICKE C J. Formation and chemical speciation of arsenic-, chromium-, and nickel-bearing coal combustion PM2.5[J]. Fuel Processing Technology, 2004, 85(6/7): 701-726. |
20 | GOODARZI F, HUGGINS F E. Speciation of chromium in feed coals and ash byproducts from Canadian power plants burning subbituminous and bituminous coals[J]. Energy & Fuels, 2005, 19(6): 2500-2508. |
21 | STAM A F. Chromium speciation in coal and biomass co-combustion products[J]. Environmental Science & Technology, 2011, 45(6): 2450-2456 |
22 | KAVOURAS P, PANTAZOPOULOU E, VARITIS S, et al. Incineration of tannery sludge under oxic and anoxic conditions: study of chromium speciation[J]. Journal of Hazardous Materials, 2015, 283: 672-679. |
23 | ZHANG Y S, SHANG P F, WANG J W, et al. Trace element (Hg, As, Cr, Cd, Pb) distribution and speciation in coal-fired power plants[J]. Fuel, 2017, 208: 647-654. |
24 | LIU H M, WANG C B, ZOU C, et al. Simultaneous volatilization characteristics of arsenic and sulfur during isothermal coal combustion[J]. Fuel, 2017, 203: 152-161. |
25 | SHEN F, LIU J, ZHANG Z, et al. On-line analysis and kinetic behavior of arsenic release during coal combustion and pyrolysis[J]. Environmental Science & Technology, 2015,49(22): 13716-13723. |
26 | JADHAV R A, FAN L S. Capture of gas-phase arsenic oxide by lime: kinetic and mechanistic studies[J]. Environmental Science & Technology, 2001, 35(4): 794-799. |
27 | ZHAO S L, DUAN Y F, CHEN C, et al. Distribution and speciation transformation of hazardous trace element arsenic in particulate matter of a coal-fired power plant[J]. Energy & Fuels, 2018, 32(5): 6049-6055. |
28 | SHAH P, STREZOV V, STEVANOV C, et al. Speciation of Arsenic and selenium in coal combustion products[J]. Energy & Fuels, 2007,21(2): 506-512. |
29 | GONG H Y, HUANG Y D, HU H Y, et al. Insight of particulate arsenic removal from coal-fired power plants[J]. Fuel, 2019, 257: 116018. |
30 | MARCZAK M, WIEROŃSKA F, BURMISTRZ P, et al. Investigation of subbituminous coal and lignite combustion processes in terms of mercury and arsenic removal[J]. Fuel, 2019, 251: 572-579. |
31 | SWANSON S M, ENGLE M A, RUPPERT L F, et al. Partitioning of selected trace elements in coal combustion products from two coal-burning power plants in the United States[J]. International Journal of Coal Geology, 2013, 113: 116-126. |
32 | LIU Z X, HAO Y, ZHANG J, et al. The characteristics of arsenic in Chinese coal-fired power plant flue gas desulphurisation gypsum[J]. Fuel, 2020, 271: 117515. |
33 | JIA C Y, WU L C, CHEN Q S, et al. Distribution behavior of arsenate into α-calcium sulfate hemihydrate transformed from gypsum in solution[J]. Chemosphere, 2020, 255: 126936. |
34 | FERNÁNDEZ-MARTÍNEZ A, ROMÁN-ROSS G, CUELLO G J, et al. Arsenic uptake by gypsum and calcite: modelling and probing by neutron and X-ray scattering[J]. Physica B: Condensed Matter, 2006, 385/386: 935-937. |
35 | WANG C B, LIU H M, ZHANG Y, et al. Review of arsenic behavior during coal combustion: volatilization, transformation, emission and removal technologies[J]. Progress in Energy and Combustion Science, 2018, 68: 1-28. |
36 | HUANG Y D, GONG H Y, HU H Y, et al. Migration and emission behavior of arsenic and selenium in a circulating fluidized bed power plant burning arsenic/selenium-enriched coal[J]. Chemosphere, 2021, 263: 127920. |
37 | United States Environmental Protection Agency. National emission standards for hazardous air pollutants from coal-and oil-fired electric utility steam generating units and standards of performance for fossil-fuel-fired electric utility, industrial-commercial-institutional, and small industrial-commercial-institutional steam generating units; technical correction: EPA-H; FRL-9942-28-OAR[S]. 2016. |
3 | 李阳. 链霉素药渣危害因子确证及其诱导细菌耐药机制研究[D]. 北京: 中国农业科学院, 2017. |
LI Yang. Study on hazard factors confirmation of streptomycin dregs and resistance mechanisms induced by the factors in bacteria[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. | |
4 | 张维娇. 泰乐菌素降解菌的筛选及药渣无害化处理方法的研究[D]. 济南: 齐鲁工业大学, 2018. |
ZHANG Weijiao. Screening of tylosin degrading bacteria and harmless treatment of drug residues[D]. Jinan: Qilu University of Technology, 2018. | |
5 | 魏永久, 张月, 郭雨生, 等. 喷淋鼓泡塔内氨水对烟气中As2O3的吸收特性[J]. 化工进展, 2020, 39(3): 834-841. |
WEI Yongjiu, ZHANG Yue, GUO Yusheng, et al. Absorption characteristics of As2O3 from flue gas by ammonia in spray-and-bubble column[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 834-841. | |
6 | CHEN J J, SUN Y Q, ZHANG Z T. Evolution of trace elements and polluting gases toward clean co-combustion of coal and sewage sludge[J]. Fuel, 2020, 280: 118685. |
7 | 张宗振, 李德波, 冯永新, 等. 1000 MW燃煤锅炉污泥掺烧试验研究与工程应用[J]. 热能动力工程, 2020, 35(1): 210-216. |
ZHANG Zongzhen, LI Debo, FENG Yongxin, et al. Investigation and applications of co-combustion of sludge in a 1000 MW coal fired boiler[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(1): 210-216. | |
8 | DONG H, JIANG X G, LYU G, et al. Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler[J]. Waste Management, 2015, 46: 227-233. |
9 | 王斌, 董玉平, 毛叶兵, 等. 抗生素菌渣的流化床快速热解特性[J]. 化工进展, 2017, 36(3): 1113-1119. |
WANG Bin, DONG Yuping, MAO Yebing, et al. Fast pyrolysis behavior of fungus residues in a fluidized bed reactor[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 1113-1119. | |
10 | 张伟, 陈晓平, 王清, 等. 城市污泥流化床中低温空气气化及重金属迁移特性[J]. 化工进展, 2019, 38(4): 2011-2021. |
ZHANG Wei, CHEN Xiaoping, WANG Qing, et al. Characteristics of sewage sludge medium-low temperature gasification and heavy metal migration in a fluidized bed reactor[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 2011-2021. | |
11 | ZHUANG X Z, SONG Y P, ZHAN H, et al. Synergistic effects on the co-combustion of medicinal biowastes with coals of different ranks[J]. Renewable Energy, 2019, 140: 380-389. |
12 | 中华人民共和国环境保护部. 中华人民共和国环保行业标准: 固体废物 金属元素的测定 电感耦合等离子体质谱法[S]. 北京: 中国环境科学出版社, 2015. |
[1] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[2] | WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446. |
[3] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[4] | LI Ning, LI Jinke, DONG Jinshan. Research and development of porous medium burner in ethylene cracking furnace [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 73-83. |
[5] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[6] | LAI Shini, JIANG Lixia, LI Jun, HUANG Hongyu, KOBAYASHI Noriyuki. Research progress of ammonia blended fossil fuel [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4603-4615. |
[7] | LI Weihua, YU Qianwen, YIN Junquan, WU Yinkai, SUN Yingjie, WANG Yan, WANG Huawei, YANG Yufei, LONG Yuyang, HUANG Qifei, GE Yanchen, HE Yiyang, ZHAO Lingyan. Leaching behavior of heavy metals from broken ton bags filled with fly ash in acid rain environment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4917-4928. |
[8] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[9] | XU Jie, XIA Longbo, LUO Ping, ZOU Dong, ZHONG Zhaoxiang. Progress in preparation and application of omniphobic membranes for membrane distillation process [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3943-3955. |
[10] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[11] | ZHANG Shan, ZHONG Zhaoping, YANG Yuxuan, DU Haoran, LI Qian. Enrichment of heavy metals in pyrolysis of municipal solid waste by phosphate modified kaolin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3893-3903. |
[12] | ZHENG Xin, JIA Li, WANG Yanlin, ZHANG Jingchao, CHEN Shihu, QIAO Xiaolei, FAN Baoguo. Effect of sewage sludge mixed with coal slime on heavy metal retention characteristics [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3233-3241. |
[13] | XIU Haoran, WANG Yungang, BAI Yanyuan, ZOU Li, LIU Yang. Combustion characteristics and ash melting behavior of Zhundong coal/municipal sludge blended combustion [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3242-3252. |
[14] | ZHUANG Jie, XUE Jinhui, ZHAO Bincheng, ZHANG Wenyi. Organic binding mechanism of heavy metals and humus during anaerobic digestion of pig manure [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3281-3291. |
[15] | LI Ruolin, HE Shaolin, YUAN Hongying, LIU Boyue, JI Dongli, SONG Yang, LIU Bo, YU Jiqing, XU Yingjun. Effect of in-situ pyrolysis on physical properties of oil shale and groundwater quality [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3309-3318. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |