Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (12): 6590-6603.DOI: 10.16085/j.issn.1000-6613.2020-2545
• Chemical processes and equipment • Previous Articles Next Articles
SONG Minhang1(), ZHAO Lixin2,3(), XU Baorui2,3, LIU Lin2,3, ZHANG Shuang2,3
Received:
2020-12-21
Revised:
2021-03-08
Online:
2021-12-21
Published:
2021-12-05
Contact:
ZHAO Lixin
宋民航1(), 赵立新2,3(), 徐保蕊2,3, 刘琳2,3, 张爽2,3
通讯作者:
赵立新
作者简介:
宋民航(1986—),男,博士,副研究员,主要从事多相旋流分离及煤炭清洁高效燃烧方面的研究工作。E-mail:基金资助:
CLC Number:
SONG Minhang, ZHAO Lixin, XU Baorui, LIU Lin, ZHANG Shuang. Discussion on technology of improving separation efficiency of liquid-liquid hydrocyclone[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6590-6603.
宋民航, 赵立新, 徐保蕊, 刘琳, 张爽. 液-液水力旋流器分离效率深度提升技术探讨[J]. 化工进展, 2021, 40(12): 6590-6603.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-2545
1 | THEW M. Hydrocyclone redesign for liquid-liquid separation[J]. The Chemical Engineering, 1986, 7: 17-23. |
2 | 付鹏波, 黄渊, 王剑刚, 等. 旋流分离过程强化新技术[J]. 化工进展, 2020, 39(12): 4766-4778. |
FU P B, HUANG Y, WANG J G, et al. Process intensification technology for hydrocyclone separation[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4766-4778. | |
3 | 张茂山, 朱元洪, 肖勇, 等. 含油废水处理技术进展[J]. 中国资源综合利用, 2007, 25(8): 22-24. |
ZHANG M S, ZHU Y H, XIAO Y, et al. Research advance in treatment of oily wastewater[J]. China Resources Comprehensive Utilization, 2007, 25(8): 22-24. | |
4 | CARLOS Gomez, JUAN Caldentey, WANG S B, et al. Oil/water separation in liquid/liquid hydrocyclones (LLHC): part 1-experimental investigation[J]. SPE Journal, 2002, 7(4): 353-372. |
5 | 王振波, 郭颖, 金有海. 具有螺旋双曲面溢流管结构的水力旋流器: CN2438508Y[P]. 2001-07-11. |
WANG Z B, GUO Y, JIN Y H. Hydrocyclone with screw double-curve overflow pipe structure: CN2438508Y[P]. 2001-07-11. | |
6 | 刘培坤, 李子硕, 杨兴华, 等. 中心曲面锥型旋流器分离性能的数值模拟[J]. 金属矿山, 2020(12): 184-189. |
LIU P K, LI Z S, YANG X H, et al. Numerical simulation of separation performance of the hydrohydrocyclone with imbeded curve surface cone at the centre[J]. Metal Mine, 2020(12): 184-189. | |
7 | LARSSON K E. Cyclone separator: US5653347[P]. 1997-08-05. |
8 | PETTY C A, PARKS S M. Flow structures within miniature hydrocyclones[J]. Minerals Engineering, 2004, 17(5): 615-624. |
9 | 魏可峰, 赵强, 崔晓亮, 等. 锥角对水力旋流器流场及分离性能影响的数值试验研究[J]. 金属矿山, 2019(4): 147-153. |
WEI K F, ZHAO Q, CUI X L, et al. Effects of cone angle on the flow field and separation performance of hydrocyclones[J]. Metal Mine, 2019(4): 147-153. | |
10 | NUNES S A, MAGALHÃES H L F, DE FARIAS NETO S R, et al. Impact of permeable membrane on the hydrocyclone separation performance for oily water treatment[J]. Membranes, 2020, 10(11): 350. |
11 | 聂涛. 轴流式液液旋流器内流场的数值模拟[D]. 东营: 中国石油大学, 2008. |
NIE T. Number simulation of the flow field in axial flow hydrocyclone[D]. Dongying: China University of Petroleum, 2008. | |
12 | LI F, LIU P K, YANG X H, et al. Effects of inlet concentration on the hydrocyclone separation performance with different inlet velocity[J]. Powder Technology, 2020, 375: 337-351. |
13 | 薛红兵, 张有志. 液-液水力旋流器的模拟试验[J]. 油田地面工程, 1994, 13(4): 1-6. |
XUE H B, ZHANG Y Z. Simulation test of fluid-fluid hydraulic cyclone[J]. Oil-Gasfield Surface Engineering, 1994, 13(4): 1-6. | |
14 | 李健, 褚良银. 液液分离水力旋流器研究进展[J]. 化工装备技术, 1998(5): 45-50. |
LI J, CHU L Y. Research progress of liquid-liquid separation hydrocyclones[J]. Chemical Equipment Technology, 1998(5): 45-50. | |
15 | 李玉星, 张劲松, 冯叔初. CFD 在液-液水力旋流器能耗及分离效率预测中的应用[J]. 流体机械, 2001, 29(10): 20-24. |
LI Y X, ZHANG J S, FENG S C. Application of CFD to the prediction of pressure loss and separation efficiency in hydrocyclone[J]. Fluid Machinery, 2001, 29(10): 20-24. | |
16 | 冯进, 陈海, 陈刚薛, 等. 70mm单锥脱油旋流器主要尺寸参数优化试验[J]. 过滤与分离, 1997, 7(1): 7-10. |
FENG J, CHEN H, CHEN G X, et al. Testing optimization of major dimensional parameter for 70mm hydrocyclone with single-cone[J]. Filter & Separator, 1997, 7(1): 7-10. | |
17 | 刘美丽, 陈家庆. 一种管式油水旋流分离设备: 201620148832.2[P]. 2016-07-27. |
LIU M L, CHEN J Q. Tubular oil-water cyclone separation equipment: 201620148832.2[P]. 2016-07-27. | |
18 | 赵立新, 贺杰. 轨迹分析法预测液-液水力旋流器的效率[J]. 国外石油机械, 1997(3): 52-60. |
ZHAO L X, HE J. Trajectory analysis method to predict the efficiency of liquid-liquid hydrocyclones[J]. Foreign Petroleum Machinery, 1997(3): 52-60. | |
19 | 池燕妮, 孟祥海, 张睿, 等. 液液旋流分离器的数值模拟研究进展[J/OL]. 过程工程学报[2021-02-13]. . |
CHI Y N, MENG X H, ZHANG R, et al. Progress in numerical simulation of liquid-liquid cyclone separator[J/OL]. The Chinese Journal of Process Engineering[2021-02-13]. . | |
20 | 赵立新, 宋民航, 徐保蕊, 等. 长流道导叶式水力旋流器的数值模拟分析[C]//第十一届全国非均相分离学术交流会论文集. 2013: 84-91. |
ZHAO L X, SONG M H, XU B R, et al. Numerical simulation analysis of long-channel hydrocyclone with guide vane[C]//Proceedings of the 11th National Heterogeneous Separation Academic Exchange Conference. 2013: 84-91. | |
21 | 邵海龙, 曹成超, 严海军, 等. 螺旋多锥体旋流器在七角井铁矿选矿中的应用[J]. 现代矿业, 2020, 36(12): 109-111. |
SHAO H L, CAO C C, YAN H J, et al. Application of spiral multi-cone swirler qijiaojing in iron ore processing[J]. Modern Mining, 2020, 36(12): 109-111. | |
22 | 马佳伟, 崔广文. 三锥角水介旋流器锥体结构优化及数值模拟[J]. 煤炭工程, 2020, 52(9): 147-151. |
MA J W, CUI G W. Optimization and numerical simulation of cone structure of tri-cone angle hydrocyclone[J]. Coal Engineering, 2020, 52(9): 147-151. | |
23 | LI S H, LIU Z M, CHANG Y L, et al. Removal of coke powders in coking wastewater using a hydrocyclone optimized by n-value[J]. The Science of the Total Environment, 2021, 752: 141887. |
24 | ZHAO L X, JIANG M H, XU B R, et al. Development of a new type high-efficient inner-cone hydrocyclone[J]. Chemical Engineering Research and Design, 2012, 90(12): 2129-2134. |
25 | 蒋明虎, 赵立新, 李枫, 等. 旋流分离技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 2000. |
JIANG M H, ZHAO L X, LI F, et al. Cyclone separation technology[M]. Harbin: Harbin Institute of Technology Press, 2000. | |
26 | 宋民航. 新型导叶式水力旋流器设计与结构优选[D]. 大庆: 东北石油大学, 2013. |
SONG M H. Design and structure optimization on a new vane-guided hydrocyclone[D]. Daqing: Northeast Petroleum University, 2013. | |
27 | 盛庆娇. 新型螺旋入口水力旋流器模拟分析及实验研究[D]. 大庆: 东北石油大学, 2013. |
SHENG Q J. Simulation analysis and experimental study on a new type spiral inlet hydrocyclone[D]. Daqing: Northeast Petroleum University, 2013. | |
28 | 赵立新, 宋鸽, 徐保蕊, 等. 井下油水旋流分离两级串联管柱优化[J]. 石油机械, 2015, 43(10): 76-80, 85. |
ZHAO L X, SONG G, XU B R, et al. Tube optimization for the downhole two stage series hydrocyclone[J]. China Petroleum Machinery, 2015, 43(10): 76-80, 85. | |
29 | ZHANG Y, WANG Y, LI F, et al. Optimal design of the linkage between two downhole hydrocyclones in series[C]//Proceedings of ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, California, USA. 2014. |
30 | ZHANG Y, JIANG M H, ZHAO L X, et al. Design and experimental study of hydrocyclone in series and in bridge of downhole oil/water separation system[C]//Proceedings of ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, Hawaii, USA, 2009. |
31 | 王羕. 井下两级串联旋流分离技术研究[D]. 大庆: 东北石油大学, 2014. |
WANG Y. Research of downhole two-stage in-series hydrocyclone separation technology[D]. Daqing: Northeast Petroleum University, 2014. | |
32 | 朱宝军. 化学驱污水旋流处理设备流场及系统可靠性分析[D]. 大庆: 大庆石油学院, 2008. |
ZHU B J. Flow field and system reliability analysis of hydrocyclonic treating facilities for chemical flooding wastewater[D]. Daqing: Daqing Petroleum Institute, 2008. | |
33 | 钟功祥, 吴陈, 严鹏, 等. 井下油水膜分离装置设计与性能研究[J]. 石油机械, 2020, 48(9): 93-100. |
ZHONG G X, WU C, YAN P, et al. Design and performance analysis of downhole oil-water membrane separation device[J]. China Petroleum Machinery, 2020, 48(9): 93-100. | |
34 | 钟功祥, 谢锐, 严鹏, 等. 井下油水膜分离器设计与仿真分析[J]. 流体机械, 2020, 48(9): 35-43. |
ZHONG G X, XIE R, YAN P, et al. Design and simulation analysis of downhole oil-water membrane separator[J]. Fluid Machinery, 2020, 48(9): 35-43. | |
35 | 刘合, 高扬, 裴晓含, 等. 旋流式井下油水分离同井注采技术发展现状及展望[J]. 石油学报, 2018, 39(4): 463-471. |
LIU H, GAO Y, PEI X H, et al. Progress and prospect of downhole cyclone oil-water separation with single-well injection-production technology[J]. Acta Petrolei Sinica, 2018, 39(4): 463-471. | |
36 | 赵立新, 蒋明虎, 李枫, 等. 一种二次分离旋流器: 201210345243.X[P]. 2013-08-21. |
ZHAO L X, JIANG M H, LI F, et al. A secondary separation hydrocyclone: 201210345243.X[P]. 2013-08-21. | |
37 | 赵立新, 蒋明虎, 刘书孟. 微孔材料对气携式液-液水力旋流器性能的影响[J]. 石油机械, 2006, 34(10): 5-7. |
ZHAO L X, JIANG M H, LIU S M. Influence of micro-pore materials on the air-injected hydrocyclone[J]. China Petroleum Machinery, 2006, 34(10): 5-7. | |
38 | 陈德海, 魏振禄, 蒋明虎, 等. 大锥段注气对液-液水力旋流器分离性能的影响[J]. 化工机械, 2014, 41(4): 480-483, 495. |
CHEN D H, WEI Z L, JIANG M H, et al. Influence of big cone air-injection on separation performance of liquid-liquid hydrocyclone[J]. Chemical Engineering & Machinery, 2014, 41(4): 480-483, 495. | |
39 | 潘威丞, 陈家庆, 姬宜朋, 等. 管式静电旋流分离器的设计及内部流场研究[J]. 石油机械, 2019, 47(11): 74-80. |
PAN W C, CHEN J Q, JI Y P, et al. Structure design and internal flow field study of tubular electrostatic cyclone separator[J]. China Petroleum Machinery, 2019, 47(11): 74-80. | |
40 | 胡康, 何利民, 张鑫儒, 等. 柱状旋流电脱水器分离性能实验研究[J]. 石油化工高等学校学报, 2017, 30(4): 18-22. |
HU K, HE L M, ZHANG X R, et al. Investigation on separation characteristic of cylindrical cyclone dehydrator[J]. Journal of Petrochemical Universities, 2017, 30(4): 18-22. | |
41 | 赵文君, 赵立新, 徐保蕊, 等. 聚结-旋流分离装置流场特性的数值模拟分析研究[J]. 流体机械, 2015, 43(7): 22-26. |
ZHAO W J, ZHAO L X, XU B R, et al. Numerical simulation analysis and research to fluid field of a coalescence-cyclone separator[J]. Fluid Machinery, 2015, 43(7): 22-26. | |
42 | 蒋明虎, 侯平涛, 王震, 等. 螺旋管聚结机理及数值模拟分析[J]. 石油机械, 2012, 40(4): 104-107. |
JIANG M H, HOU P T, WANG Z, et al. A numerical simulation analysis of coalescence mechanism of spiral tube[J]. China Petroleum Machinery, 2012, 40(4): 104-107. | |
43 | 邢雷, 蒋明虎, 赵立新, 等. 水力聚结器结构参数优选[J/OL]. 机械科学与技术. . |
XING L, JIANG M H, ZHAO L X, et al. Structural parameters optimization of hydraulic coalescer[J/OL]. Mechanical Science and Technology for Aerospace Engineering. . | |
44 | KNUDSEN B L, FROST T K, WILLUMSEN C F, et al. Meeting the zero discharge for produced water[R]. SPE 86671, 2004. |
45 | GRINI P G, HJELSVOLD M, JOHNSEN S. Choosing produced water treatment technologies based on the environmental impact reduction[R]. SPE 74002, 2002. |
46 | 赵立新, 蒋明虎, 徐保蕊, 等. 轴流式反转入口流道旋流器: CN102847618B[P]. 2017-03-15. |
ZHAO L X, JIANG M H, XU B R, et al. Axial-flow-type inverted inlet flow channel swirler: CN104815768B[P]. 2017-03-15. | |
47 | 宋民航, 赵岩, 邵春岩, 等. 一种粒径分级聚结式旋流器: 201920899416.X[P]. 2020-06-05. |
SONG M H, ZHAO Y, SHAO C Y, et al. Particle size classification coalescing hydrocyclone: 201920899416.X[P]. 2020-06-05. | |
48 | 付鹏波, 汪林华, 王飞, 等. 进口颗粒排序型旋流器: 201610665460.5[P]. 2019-01-01. |
PU P B, WANG L H, WANG F, et al. A cyclone with particle reordered at the inlet: 201610665460.5[P]. 2019-01-01. | |
49 | FU P B, WANG F, YANG X J, et al. Inlet particle-sorting cyclone for the enhancement of PM2.5 separation[J]. Environmental Science & Technology, 2017, 51(3): 1587-1594. |
50 | 袁惠新, 吴敏浩, 付双成, 等. 微型旋流器溢流口结构参数对SCR废催化剂分离性能的影响[J]. 机械设计与制造, 2020(8): 159-162. |
YUAN H X, WU M H, FU S C, et al. Effect of design parameters of a micro hydrocyclone on the separation performance of waste SCR catalyst[J]. Machinery Design & Manufacture, 2020(8): 159-162. | |
51 | 赵立新, 宋民航, 杨宏燕, 等. 基于粒径选择的水力旋流分离装置: 201811002039.1[P]. 2020-06-02. |
ZHAO L X, SONG M H, YANG H Y, et al. Hydrocyclone separation device based on particle size selection: 201811002039.1[P]. 2020-06-02. | |
52 | 马骏, 何亚其, 白健华, 等. 入口结构对粒径重构旋流器分离性能影响分析[J/OL]. 机械科学与技术. . |
MA J, HE Q Y, BAI J H, et al. Impact analysis of inlet structure on performance of hydrocyclone with droplet size reconstruction[J/OL]. Mechanical Science and Technology for Aerospace Engineering. . | |
53 | 史仕荧, 邓晓辉, 吴应湘, 等. 操作参数对柱形旋流器油水分离性能的影响[J]. 石油机械, 2011, 39(7): 4-8. |
SHI S Y, DENG X H, WU Y X, et al. The effect of operating parameters on the oil-water separation performance of the cylindrical cyclone[J]. China Petroleum Machinery, 2011, 39(7): 4-8. | |
54 | 王尊策. 复合式水力旋流器的结构及特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2003: 25-29. |
WANG Z C. Research on the structure and the characteristics of compound hydrocyclones[D]. Harbin: Harbin Engineering University, 2003: 25-29. | |
55 | GAY J C, TRIPONEY G, BEZARD C, et al. Rotary cyclone will improve oily water treatment and reduce space requirement/weight on offshore platforms[C]//SPE Offshore Europe, Aberdeen, United Kingdom, 1987. |
56 | ZHAO L X, LI F, MA Z Z, et al. Theoretical analysis and experimental study of dynamic hydrocyclones[J]. Journal of Energy Resources Technology, 2010, 132: 042901-1. |
57 | Anon. Enviro voraxial technology seals IP sale with Schlumberger[J]. Filtration Industry Analyst, 2017, 2017(6):16. |
58 | company Schlumberher. Impeller-induced cyclonic separator[EB/OL].[2020-08-15]. . |
59 | 姬宜朋. 轴向涡流分离器的理论与实验研究[D]. 北京: 北京化工大学, 2015. |
JI Y P. Theoretical & experimental study onto the voraxial-separator[D]. Beijing: Beijing University of Chemical Technology, 2015. | |
60 | 姬宜朋, 陈家庆, 蔡小磊, 等. BIPTVAS-Ⅱ型轴向涡流分离器工程样机及其在流花11-1油田的现场试验[J]. 中国海上油气, 2016, 28(1): 133-138. |
JI Y P, CHEN J Q, CAI X L, et al. A BIPTVAS-Ⅱ voraxial separator prototype and its pilot test in LH 11-1 oilfield[J]. China of Offshore Oil and Gas, 2016, 28(1): 133-138. | |
61 | 宋民航, 赵立新, 杨宏燕, 等. 一种溢流管自旋式水力旋流器: CN110665658A[P]. 2020-01-10. |
SONG M H, ZHAO L X, YANG H Y, et al. Overflow pipe self-rotating type hydrocyclone: CN110665658A[P]. 2020-01-10. | |
62 | 赵立新, 宋民航, 杨宏燕, 等. 一种旋流室自旋式水力旋流器: CN110665657A[P]. 2020-01-10. |
ZHAO L X, SONG M H, YANG H Y, et al. Rotational-flow chamber spin-type hydrocyclone: CN110665657A[P]. 2020-01-10. | |
63 | 赵立新, 宋民航, 杨宏燕, 等. 一种降低液滴破碎的轴向内芯式阀门: CN109163112A[P]. 2019-01-08. |
ZHAO L X, SONG M H, YANG H Y, et al. Axial inner core type valve capable of reducing drop breakup: CN109163112A[P]. 2019-01-08. | |
64 | FERNANDES C A, RIBEIRO R F, LOUREIRO J B, et al. Drop sizes of emulsions in cyclonic-based valves[C]//European Turbulence Conference held in Lyon, France, 2013. |
65 | MARINS L P M, DUARTE D G, LOUREIRO J B R, et al. LDA and PIV characterization of the flow in a hydrocyclone without an air-core[J]. J. Petroleum Science and Engineering, 2010, 70(3/4): 168-176. |
66 | 刘鹏. 油气开采用井口低剪切节流阀的理论与实验研究[D]. 北京: 北京化工大学, 2014. |
LIU P. Theoretical and experimental research of low shear wellhead choke vale used in oil and gas exploration[D]. Beijing: Beijing University of Chemical Technology, 2014. | |
67 | 刘冰, 赵振江, 韦尧尧, 等. 分流比对旋流器影响的数值模拟与试验分析[J]. 煤矿机械, 2020, 41(11): 26-29. |
LIU B, ZHAO Z J, WEI Y Y, et al. Numerical simulation and experimental analysis of influence of split ratio on hydrocyclone[J]. Coal Mine Machinery, 2020, 41(11): 26-29. | |
68 | 宋民航, 赵立新, 杨宏燕, 等. 一种调节旋流分离器分流比的双腔室阀门: CN109107790A[P]. 2019-01-01. |
SONG M H, ZHAO L X, YANG H Y, et al. Double-chamber valve for regulating split ratio of cyclone separator: CN109107790A[P]. 2019-01-01. | |
69 | 武金辉, 巩志强, 王振波, 等. 含油污泥分离技术研究进展[J/OL]. 应用化工[2021-02-13]. . |
WU J H, GONG Z Q, WANG Z B, et al. Research progress on separation technology of oily sludge[J/OL]. Applied Chemical Industry[2021-02-13]. . |
[1] | WANG Lanjiang, LIANG Yu, TANG Qiong, TANG Mingxing, LI Xuekuan, LIU Lei, DONG Jinxiang. Synthesis of highly dispersed Pt/HY catalyst by rapid pyrolysis of platinum precursors and its performance for deep naphthalene hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4159-4166. |
[2] | SONG Minhang, ZHAO Lixin, XU Baorui, LIU Lin, ZHANG Shuang. Research progress of cyclone-enhanced separation based on disperse phase rearrangement at the inlet [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2219-2232. |
[3] | XIE Yingchun, WANG Qianqian, MA Yongli, SUN Guoqiang, LIU Mingyan. Ultrasonic and ultraviolet coupling degassing and sterilization [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1629-1637. |
[4] | CHEN Erjun, ZHANG Yuling, LU Shaolei, DUAN Haiyang, JIN Wenzhang. Stability and physicochemical properties of air nanobubbles [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4673-4681. |
[5] | CHEN Zhiping, SHI Faxiang, ZHOU Wenwu, YANG Zhiyuan, ZHOU Anning. Study on SAPO-11 molecular sieve catalyst with small particle size and hierarchical pores for isomerization of hydrocarbons [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4767-4781. |
[6] | WANG Zepeng, YUAN Zhongxian, WANG Jie, WEN Xin, LIU Yimo. Effect of particulate diameter of silica gel on performance of solar adsorption refrigeration system [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3545-3552. |
[7] | LI Juanjuan, ZHANG Tianyong, LI Xianggao. Construction of high-quality iron-manganese black nano-dispersion system for electrophoretic display [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3178-3185. |
[8] | CHE Zhongjun, ZHAO Lixin, GE Yiqing. Development status of magnetic field intensificating separation of multiphase media [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2839-2851. |
[9] | LYU Feiyong, CHU Mo, YI Haoran, HAO Yan, YANG Yanbo, SHI Xu, SUN Xingbo. Distribution characteristics of magnetic ash particles in gasification slag of different particle sizes [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2372-2378. |
[10] | HAN Fen, YANG Na, SUN Yongli, JIANG Bin, XIAO Xiaoming, ZHANG Lyuhong. Removal of emulsified water in oil by glass fiber coalescer [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6723-6732. |
[11] | ZHU Mingjun, HU Dapeng. Simulation and experimental analysis of the influence of operating parameters on oil-water-sand separation performance of three-phase decanter centrifuge [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5188-5199. |
[12] | JI Zike, BAO Cheng. Research progress of selective CO methanation [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 120-132. |
[13] | ZHANG Yuekan, GE Jiangbo, LIU Peikun, YANG Xinghua. Flow field characteristics and separation performance of multi-inlet hydrocyclone [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 86-94. |
[14] | ZHANG Shuang, ZHAO Lixin, LIU Yang, SONG Minhang, LIU Lin. Analysis of flow field distribution and separation characteristics of degassing and oil-removal hydrocyclone system [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 75-85. |
[15] | XU Bo, JIANG Guobin, YU Jinlei, HU Jinyan, ZHAO Liang, XU Bingke. Impact of different surfactants on characteristics of single-phase microemulsions [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 350-356. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |