Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (9): 4238-4246.DOI: 10.16085/j.issn.1000-6613.2019-0197
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
Chen WANG,Yujia ZHAO,Chun LI,Xiaohong ZHOU()
Received:
2019-01-31
Online:
2019-09-05
Published:
2019-09-05
Contact:
Xiaohong ZHOU
通讯作者:
周晓宏
作者简介:
王晨(1994—),女,硕士研究生。
基金资助:
CLC Number:
Chen WANG,Yujia ZHAO,Chun LI,Xiaohong ZHOU. Advances in dynamic transcriptional regulation of microbial metabolic pathways[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4238-4246.
王晨,赵雨佳,李春,周晓宏. 动态转录调控微生物代谢途径研究进展[J]. 化工进展, 2019, 38(9): 4238-4246.
1 | CHOI Y J , LEE S Y . Microbial production of short-chain alkanes[J]. Nature, 2013, 502(7472): 571-574. |
2 | SHEPPARD M J , KUNJAPUR A M , WENCK S J , et al . Retro-biosynthetic screening of a modular pathway design achieves selective route for microbial synthesis of 4-methyl-pentanol[J]. Nature Communications, 2014, 5: 5031-5030. |
3 | KUNJAPUR A M , TARASOVA Y , PRATHER K L . Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli [J]. Journal of the American Chemical Society, 2014, 136(33): 11644-11654. |
4 | GONZáLEZ-PAJUELO M , MEYNIAL-SALLES I , MENDES F , et al . Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol[J]. Metabolic Engineering, 2005, 7(5/6): 329-336. |
5 | RO D K, PARADISE E M , OUELLET M , et al . Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440(7086): 940-943. |
6 | 顾洋, 李江华, 堵国成, 等 . 微生物代谢工程的研究进展和展望[J].生物产业技术, 2017(1): 64-70. |
GU Y , LI J H , DU G C , et al . Research progress and prospects of microbial metabolism engineering[J]. Biotechnology, 2017 (1): 64-70. | |
7 | HOLTZ W J , KEASLING J D . Engineering static and dynamic control of synthetic pathways[J]. Cell, 2010, 140(1): 19-23. |
8 | TAN S Z , PRATHER K L . Dynamic pathway regulation: recent advances and methods of construction[J]. Curr. Opin. Chem. Biol., 2017, 41: 28-35. |
9 | BINDER D , FROHWITTER J , MAHR R , et al . Light-controlled cell factories: employing photocaged isopropyl-β-d-thiogalactopyranoside for light-mediated optimization of lac promoter-based gene expression and (+)-valencene biosynthesis in Corynebacterium glutamicum [J]. Appl. Environ. Microbiol., 2016, 82(20): 6141-6149. |
10 | BAUMSCHLAGER A , AOKI S K , KHAMMASH M . Dynamic blue light-inducible T7 RNA polymerases (opto-T7RNAPs) for precise spatiotemporal gene expression control[J]. ACS Synthetic Biology, 2017, 6(11): 2157-2167. |
11 | MILLER M B , BASSLER B L . Quorum sensing in bacteria[J]. Annual Review of Microbiology, 2000, 55(1): 165-199. |
12 | FRANCISCO S , VICENTE R , VERóNICA D , et al . Fungal light-oxygen-voltage domains for optogenetic control of gene expression and flocculation in yeast[J]. mBio, 2018, 9(4): 1-14. |
13 | CHAKSHUSMATHI G , MONDAL K , LAKSHMI G S , et al . Design of temperature-sensitive mutants solely from amino acid sequence[J]. Proc. Natl. Acad. Sci. U S A, 2004, 101(21): 7925-7930. |
14 | LOWMAN H B , BINA M . Temperature-mediated regulation and downstream inducible selection for controlling gene expression from the bacteriophage lambda pL promoter[J]. Gene, 1990, 96(1): 133-136. |
15 | VALDEZ-CRUZ N A , CASPETA L , PéREZ N O , et al . Production of recombinant proteins in E. coli by the heat inducible expression system based on the phage lambda PL and/or PR promoters[J]. Microbial Cell Factories, 2010, 9(1): 1-16. |
16 | SHI H , KYUWA K , TAKASU M , et al . Temperature-induced expression of phb genes in Escherichia coli and the effect of temperature patterns on the production of poly-3-hydroxybutyrate[J]. Journal of Bioscience & Bioengineering, 2001, 91(1): 21-26. |
17 | ZHOU L , DENG C , CUI W J , et al . Efficient L-alanine production by a thermo-regulated switch in Escherichia coli [J]. Applied Biochemistry & Biotechnology, 2016, 178(2): 1-14. |
18 | ZHANG C , QI J , LI Y , et al . Production of α‐ketobutyrate using engineered Escherichia coli via temperature shift[J]. Biotechnology & Bioengineering, 2016, 113(9): 2054-2059. |
19 | ZHOU P , XIE W , YAO Z , et al . Development of a temperature-responsive yeast cell factory using engineered Gal4 as a protein switch[J]. Biotechnol. Bioeng., 2018, 115(5): 1321-1330. |
20 | WESTFALL P J , PITERA D J , LENIHAN J R , et al . Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(3): 655-656. |
21 | XIE W , YE L , LV X , et al . Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2015, 28: 8-18. |
22 | TEIXEIRA P G , FERREIRA R , ZHOU Y J , et al . Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2017, 16(1): 45-55. |
23 | WILLIAMS T C , ESPINOSA M I , NIELSEN L K , et al . Dynamic regulation of gene expression using sucrose responsive promoters and RNA interference in Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2015, 14(1): 43-52. |
24 | SOMA Y , TSURUNO K , WADA M , et al . Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch[J]. Metabolic Engineering, 2014, 23(5): 175. |
25 | TAN S Z , MANCHESTER S , PRATHER K L . Controlling central carbon metabolism for improved pathway yields in Saccharomyces cerevisiae [J]. ACS Synthetic Biology, 2015, 5(2):116-124. |
26 | PENG B , PLAN M R , CARPENTER A , et al . Coupling gene regulatory patterns to bioprocess conditions to optimize synthetic metabolic modules for improved sesquiterpene production in yeast[J]. Biotechnology for Biofuels, 2017, 10(1): 43-58. |
27 | GOPALAKRISHNAN S , KROGSTIE J , SINDRE G . Engineering triterpene production in Saccharomyces cerevisiae - beta - amyrin synthase from Artemisia annua [J]. Febs Journal, 2008, 275(8): 1852-1859. |
28 | LALWANI M A , ZHAO E M , AVALOS J L . Current and future modalities of dynamic control in metabolic engineering[J]. Current Opinion in Biotechnology, 2018, 52: 56-65. |
29 | MICHENER J K , THODEY K , LIANG J C , et al . Applications of genetically-encoded biosensors for the construction and control of biosynthetic pathways[J]. Metabolic Engineering, 2012, 14(3): 212-222. |
30 | DAHL R H , ZHANG F , ALONSO-GUTIERREZ J , et al . Engineering dynamic pathway regulation using stress-response promoters[J]. Nature Biotechnology, 2013, 31(11): 1039-1046. |
31 | YUAN J , CHING C B . Dynamic control of ERG9 expression for improved amorpha-4,11-diene production in Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2015, 14(1): 38-47. |
32 | RAMAN S , ROGERS J K , TAYLOR N D , et al . Evolution-guided optimization of biosynthetic pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(50):17803-17808. |
33 | YOUNGER A K , DALVIE N C , ROTTINGHAUS A G , et al . Engineering modular biosensors to confer metabolite-responsive regulation of transcription[J]. ACS Synthetic Biology, 2017, 6(2):311-325. |
34 | FARMER W , LIAO J . Improving lycopene production in Escherichia coli by engineering metabolic control[J]. Nature Biotechnology, 2000, 18(5): 533-537. |
35 | XU P , LI L , ZHANG F , et al . Improving fatty acids production by engineering dynamic pathway regulation and metabolic control[J]. Proc. Natl. Acad. Sci. U S A, 2014, 111(31): 11299-11304. |
36 | DAVID F , NIELSEN J , SIEWERS V . Flux control at the malonyl-CoA node through hierarchical dynamic pathway regulation in Saccharomyces cerevisiae [J]. ACS Synthetic Biology, 2016, 5(3): 224-233. |
37 | BREAKER R R . Prospects for riboswitch discovery and analysis[J]. Molecular Cell, 2011, 43(6): 867-879. |
38 | ZHOU L B , ZENG A P . Exploring lysine riboswitch for metabolic flux control and improvement of l-lysine synthesis in Corynebacterium glutamicum [J]. ACS Synthetic Biology, 2015, 4(6): 729-734. |
39 | HASELTINE E , ARNOLD F . Implications of rewiring bacterial quorum sensing[J]. Applied & Environmental Microbiology, 2008, 74(2): 437-445. |
40 | LIU H , LU T . Autonomous production of 1,4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli [J]. Metabolic Engineering, 2015, 29: 135-141. |
41 | SOMA Y , HANAI T . Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production[J]. Metabolic Engineering, 2015, 30: 7-15. |
42 | WILLIAMS T C , NIELSEN L K , VICKERS C E . Engineered quorum sensing using pheromone-mediated cell-to-cell communication in Saccharomyces cerevisiae [J]. ACS Synth. Biol., 2013, 2(3): 136-149. |
43 | WILLIAMS T C , AVERESCH N J , WINTER G , et al . Quorum-sensing linked RNA interference for dynamic metabolic pathway control in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2015, 29: 124-134. |
44 | XU X , DU Z , LIU R , et al . A single-component optogenetic system allows stringent switch of gene expression in yeast cells[J]. ACS Synth. Biol., 2018, 7(9): 2045-2053. |
45 | GUPTA A , REIZMAN I M , REISCH C R , et al . Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit[J]. Nature Biotechnology, 2017, 35(3): 273-279. |
[1] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[2] | ZHANG Kai, JIN Hanyu, LIU Siyu, WANG Shuai. Simulation of mass transfer process under the bubble interaction in bubbling fluidization [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2828-2835. |
[3] | MA Jingwen, NIU Jiayu, LI Xiufen. Promotion technology of aerobic compost ripening [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2744-2750. |
[4] | QIU Mofan, JIANG Lin, LIU Rongzheng, LIU Bing, TANG Yaping, LIU Malin. Research progress of particle-scale model in chemical reaction numerical simulation of gas-solid fluidized bed [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5047-5058. |
[5] | ZHAO Tongxin, ZHAO Lei, ZHANG Yanping, LI Yin. Research progress of formic acid biotransformation [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 67-72. |
[6] | YAN Zihan, CHEN Qunyun, LI Zhuo, FU Rongbing, LI Yanwei, WU Zhigen. Numerical analysis and optimization of the performance of an improved soil crushing and mixing structure [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 72-80. |
[7] | XU Jianping, WANG Ying, LI Chun, ZHOU Xiaohong. Dynamic regulation strategies and regulation network construction of metabolic pathways in microbial cell factories [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6511-6521. |
[8] | TAO Yuxuan, ZHANG Shangjie, JING Yiwen, XIN Fengxue, DONG Weiliang, ZHOU Jie, JIANG Yujia, ZHANG Wenming, JIANG Min. Recent advances in the construction strategy of methylotrophic Escherichia coli [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3932-3941. |
[9] | MA Zhibin, ZHANG Xueli, GUO Yanxia, CHENG Fangqin. Research progress on characteristics and element dissolution behaviors of circulating gluidized bed-derived fly ash [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3058-3071. |
[10] | LEI Xin, YAN Rong, MU Yujie, ZHANG Yuancan, FU Zhimin. Effect of iron on nitrogen removal efficiency of anaerobic ammonium oxidation bacteria [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2730-2738. |
[11] | ZHOU Zikang, XU Ping. Application and progress of global transcription regulation in microbial cell factory construction [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1248-1251. |
[12] | LIU Weibing, YE Bangce. Progress of synthetic biology research and biological manufacturing of actinomycetes polyketides [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1226-1237. |
[13] | HUANG Congxin, WANG Shunteng, FAN Yuying, JIAN Meipeng, TANG Chaochun, LIU Ruiping. Advance of ultrathin 2D porous nanosheets in water treatment [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6859-6875. |
[14] | JING Jiaqiang, HUANG Wanni, SONG Xuehua, LUO Jiaqi, SONG Yang, JI Hui, LUO Qiuhan, WANG Sihan. Design and analysis of novel lubricating element in downhole oil-water separation and lubrication based on Fluent [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 5929-5938. |
[15] | Jian WANG, Yafeng ZHAO, Xiaolin QIAO, Xinggang LI, Hui ZHAO. Measurement and simulation of the angle of repose of solid filler in composite solid propellant [J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 312-318. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 987
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 342
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |