[1] IZA Structure Commission Database of zeolite structure[EB/OL].[2016-10-1].http://www.iza-online.org/databases1.
[2] 刘冠锋,臧甲忠,于海斌,等. 高岭土合成Y型分子筛研究进展[J]. 工业催化, 2014, 22(12):893-899. LIU G F, ZANG J Z, YU H B, et al. Advances in synthesis of Y zeolite by Kaolin[J]. Industial Catalysis, 2014, 22(12):893-899.
[3] QIN Z X, SHEN B J, YU Z W, et al. A defect-based strategy for the preparation of mesoporous zeolite Y for high-performance catalytic cracking[J]. Journal of Catalysis, 2013, 298:102-111.
[4] CHANG X W, HE L F, LIANG H N, et al. Screening of optimum condition for combined modification of ultra-stable Y zeolites using multi-hydroxyl carboxylic acid and phosphate[J]. Catalysis Today, 2010, 158(3):198-204.
[5] 黄朝晖,刘乃旺,姚佳佳,等. USY分子筛表面酸性的调变及其在催化脱除芳烃中烯烃的应用[J]. 化工进展, 2016, 35(1):138-144. HUANG C H, LIU N W, YAO J J, et al. Surface acid modification of zeolite and its application in removal of olefins in aromatics[J]. Chemical Industry and Engineering Progress, 2016, 35(1):138-144.
[6] LOPEZ-OROZCO S, INAYAT A, SCHWAB A, et al. Zeolitic materials with hierarchical porous structures[J]. Advanced Materials, 2011, 23(22/23):2602-2615.
[7] YUTTHALEKHA T, WATTANAKIT C, WARAKULWIT C, et al. Hierarchical FAU-type zeolite nanosheets as green and sustainable catalysts for benzylation of toluene[J]. Journal of Cleaner Production, 2017, 142:1244-1251.
[8] TEMPELMAN C H L, ZHU X C, GUDUN K, et al. Texture, acidity and fluid catalytic cracking performance of hierarchical faujasite zeolite prepared by an amphiphilic organosilane[J]. Fuel Processing Technology, 2015, 139:248-258.
[9] SHANNON R D, GARDNER K H, STALEY R H, et al. The nature of the nonframework aluminum species formed during the dehydroxylation of HY[J]. The Journal of Physical Chemistry, 1985, 89(22):4778-4788.
[10] LIU C, LI G N, HENSEN E J M, et al. Nature and catalytic role of extraframework aluminum in faujasite zeolite:a theoretical perspective[J]. ACS Catalysis, 2015, 5(11):7024-7033.
[11] LUTZ W, KURZHALS R, KRYUKOVA G, et al. Formation of mesopores in USY zeolites:a case revisited[J]. Zeitschrift für Anorganische und Allgemeine Chemie, 2010, 636(8):1497-1505.
[12] MIHAYI R M, KOLLAR M, KIRALY P, et al. Effect of extra-framework Al formed by successive steaming and acid leaching of zeolite MCM-22 on its structure and catalytic performance[J]. Applied Catalysis A:General, 2012, 417:76-86.
[13] LOHES U, MILDEBRATH M. Dealuminierte molekularsiebe vom typ Y zur porosität dealuminierter molekularsiebe[J]. Zeitschrift für Anorganische und Allgemeine Chemie, 1981, 476(5):126-135.
[14] JANSSEN A H, KOSTER A J, DE JONG K P. On the shape of the mesopores in zeolite Y:a three-dimensional transmission electron microscopy study combined with texture analysis[J]. The Journal of Physical Chemistry B, 2002, 106(46):11905-11909.
[15] JANSSEN A H, KOSTER A J, DE JONG K P. Three-dimensional transmission electron microscopic observations of mesopores in dealuminated zeolite Y[J]. Angewandte Chemie, 2001, 113(6):1136-1138.
[16] VERBOEKEND D, VILE G, PEREZ-RAMIREZ J. Hierarchical Y and USY zeolites designed by post-synthetic strategies[J]. Advanced Functional Materials, 2012, 22(5):916-928.
[17] LOPEZ-FONSECA R, DE RIVAS B, GUTIERREZ-ORTIZ J I, et al. Characterisation of the textural properties of chemically dealuminated Y zeolites[J]. Studies in Surface Science and Catalysis, 2002, 144:717-722.
[18] CARROT M M L R, RUSSO P A, CARVALHAL C, et al. Adsorption of n-pentane and iso-octane for the evaluation of the porosity of dealuminated BEA zeolites[J]. Microporous and Mesoporous Materials, 2005, 81(1):259-267.
[19] VERBOEKEND D, VILE G, PEREZ-RAMIREZ J. Mesopore formation in USY and beta zeolites by base leaching:selection criteria and optimization of pore-directing agents[J]. Crystal Growth & Design, 2012, 12(6):3123-3132.
[20] GARCIA-MARTINEZ J, JOHNSON M, VALLA J, et al. Mesostructured zeolite Y-high hydrothermal stability and superior FCC catalytic performance[J]. Catalysis Science & Technology, 2012, 2(5):987-994.
[21] CHAL R, CACCIAGUERRA T, VAN DONK S, et al. Pseudomorphic synthesis of mesoporous zeolite Y crystals[J]. Chemical Communications, 2010, 46(41):7840-7842.
[22] VERBOEKEND D, MILINA M, MITHCHELL S, et al. Hierarchical zeolites by desilication:occurrence and catalytic impact of recrystallization and restructuring[J]. Crystal Growth & Design, 2013, 13(11):5025-5035.
[23] ZHAO L, GAO J S, XU C M, et al. Alkali-treatment of ZSM-5 zeolites with different SiO2/Al2O3 ratios and light olefin production by heavy oil cracking[J]. Fuel Processing Technology, 2011, 92(3):414-420.
[24] VERBOEKEND D, MITCHELL S, MILINA M, et al. Full compositional flexibility in the preparation of mesoporous MFI zeolites by desilication[J]. The Journal of Physical Chemistry C, 2011, 115(29):14193-14203.
[25] LI X F, PRINS R, VAN BOKHOVEN J A. Synthesis and characterization of mesoporous mordenite[J]. Journal of Catalysis, 2009, 262(2):257-265.
[26] DE JONG K P, ZECEVIC J, FRIEDRICH H, et al. Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts[J]. Angewandte Chemie, 2010, 122(52):10272-10276.
[27] GROEN J C, JANSEN J C, MOULIJN J A, et al. Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication[J]. The Journal of Physical Chemistry B, 2004, 108(35):13062-13065.
[28] XING C, YANG G H, WU M B, et al. Hierarchical zeolite Y supported cobalt bifunctional catalyst for facilely tuning the product distribution of Fischer-Tropsch synthesis[J]. Fuel, 2015, 148:48-57.
[29] QIN Z X, SHEN B J, GAO X H, et al. Mesoporous Y zeolite with homogeneous aluminum distribution obtained by sequential desilication-dealumination and its performance in the catalytic cracking of cumene and 1, 3, 5-triisopropylbenzene[J]. Journal of Catalysis, 2011, 278(2):266-275.
[30] 申宝剑,覃正兴,高雄厚,等. 碱处理脱硅与提高Y型分子筛硅铝比——矛盾的对立与统一[J]. 催化学报, 2012, 33(1):152-163. SHEN B J, QIN Z X, GAO H X, et al. Desilication by alkaline treatment and increasing the silica to alumina ratio of zeolite Y[J]. Chinese Journal of Catalysis, 2012, 33(1):152-163.
[31] VAN DONK S, JANSSEN A H, BITTER J H, et al. Generation, characterization, and impact of mesopores in zeolite catalysts[J]. Catalysis Reviews, 2003, 45(2):297-319.
[32] 覃正兴,申宝剑. 水热处理过程中Y分子筛的骨架脱铝、补硅及二次孔的形成[J]. 化工学报, 2016, 67(8):3160-3169. QIN Z X, SHEN B J. Dealumination, silicon reinsertion, and secondary pore formation in steaming of zeolite Y[J]. CIESC Journal, 2016, 67(8):3160-3169.
[33] TRINATAFILLIDIS C S, VLESSIDIS A G, EVMIRIDIS N P. Dealuminated H-Y zeolites:influence of the degree and the type of dealumination method on the structural and acidic characteristics of H-Y zeolites[J]. Industrial & Engineering Chemistry Research, 2000, 39(2):307-319.
[34] CORMA A, NAVARRO M T. From micro to mesoporous molecular sieves:adapting composition and structure for catalysis[J]. Studies in Surface Science and Catalysis, 2002, 142:487-501.
[35] IVANOVA I I, KNVAZEVA E E. Micro-mesoporous materials obtained by zeolite recrystallization:synthesis, characterization and catalytic applications[J]. Chemical Society Reviews, 2013, 42(9):3671-3688.
[36] VAN BORM R, AERTS A, REYNIERS M F, et al. Catalytic cracking of 2,2,4-trimethylpentane on FAU, MFI, and bimodal porous materials:influence of acid properties and pore topology[J]. Industrial & Engineering Chemistry Research, 2010, 49(15):6815-6823.
[37] LIU C, LI G N, HENSEN E J M, et al. Relationship between acidity and catalytic reactivity of faujasite zeolite:a periodic DFT study[J]. Journal of Catalysis, 2016, 344:570-577.
[38] LI W L, ZHENG J Y, LUO Y B, et al. Effect of hierarchical porosity and phosphorus modification on the catalytic properties of zeolite Y[J]. Applied Surface Science, 2016, 382:302-308.
[39] PEREZ-RAMIREZ J, VERBOEKEND D, BONILLA A, et al. Zeolite catalysts with tunable hierarchy factor by pore-growth moderators[J]. Advanced Functional Materials, 2009, 19(24):3972-3979.
[40] LI T, CHENG J, HUANG R, et al. Conversion of waste cooking oil to jet biofuel with nickel-based mesoporous zeolite Y catalyst[J]. Bioresource Technology, 2015, 197:289-294.
[41] TIAN F P, SHEN Q C, FU Z K, et al. Enhanced adsorption desulfurization performance over hierarchically structured zeolite Y[J]. Fuel Processing Technology, 2014, 128:176-182.
[42] ENNAERT T, VAN AELST J, DIJKMANS J, et al. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass[J]. Chemical Society Reviews, 2016, 45(3):584-611. |