Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (7): 3711-3718.DOI: 10.16085/j.issn.1000-6613.2020-1579
• Energy processes and technology • Previous Articles Next Articles
LIU Shoujun1,2,3(), WANG Zhao1,3, YAN Kang1,3, YANG Song1,3(
), SHANGGUAN Ju2,3, DU Wenguang2,3, CHANG Zhiwei2,3, LIU Yuehua2,3
Received:
2020-08-10
Revised:
2020-11-06
Online:
2021-07-19
Published:
2021-07-06
Contact:
YANG Song
刘守军1,2,3(), 王钊1,3, 演康1,3, 杨颂1,3(
), 上官炬2,3, 杜文广2,3, 常志伟2,3, 刘月华2,3
通讯作者:
杨颂
作者简介:
刘守军(1963—),男,博士,副教授,研究方向为洁净煤技术。E-mail: 基金资助:
CLC Number:
LIU Shoujun, WANG Zhao, YAN Kang, YANG Song, SHANGGUAN Ju, DU Wenguang, CHANG Zhiwei, LIU Yuehua. Catalyst and hydrogen transport mechanism of catalytic hydrogenation of Shenfu long-flame coal[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3711-3718.
刘守军, 王钊, 演康, 杨颂, 上官炬, 杜文广, 常志伟, 刘月华. 神府长焰煤加氢增黏反应中催化剂及氢传递机理[J]. 化工进展, 2021, 40(7): 3711-3718.
样品 | 元素分析(daf)/% | 工业分析/% | GRI | |||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | N | S | Oa | Mad | Ad | Vdaf | |||
长焰煤 | 80.64 | 4.95 | 1.17 | 0.48 | 12.76 | 4.73 | 8.34 | 37.32 | 0 |
样品 | 元素分析(daf)/% | 工业分析/% | GRI | |||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | N | S | Oa | Mad | Ad | Vdaf | |||
长焰煤 | 80.64 | 4.95 | 1.17 | 0.48 | 12.76 | 4.73 | 8.34 | 37.32 | 0 |
溶剂 | N2质量分数/% | H2质量分数/% | |||
---|---|---|---|---|---|
不加催化剂 | 加入催化剂 | 不加催化剂 | 加入催化剂 | ||
四氢萘 | 0.32 | 0.83 | 0.66 | 2.01 | |
1-甲基萘 | 97.90 | 97.07 | 97.68 | 95.63 | |
5-甲基四氢化萘 | 0.94 | 0.92 | 0.88 | 0.76 | |
萘 | 0.84 | 1.18 | 0.78 | 1.60 |
溶剂 | N2质量分数/% | H2质量分数/% | |||
---|---|---|---|---|---|
不加催化剂 | 加入催化剂 | 不加催化剂 | 加入催化剂 | ||
四氢萘 | 0.32 | 0.83 | 0.66 | 2.01 | |
1-甲基萘 | 97.90 | 97.07 | 97.68 | 95.63 | |
5-甲基四氢化萘 | 0.94 | 0.92 | 0.88 | 0.76 | |
萘 | 0.84 | 1.18 | 0.78 | 1.60 |
序号 | 反应气氛 | 催化剂 | 溶剂 | 煤转化率/% | 产率/% | 氢耗/g·(100g coal)-1 | |||
---|---|---|---|---|---|---|---|---|---|
PAA | Oil+Gas | H2 | Solvent | ||||||
1 | N2 | 无 | 1-MN | 12.5 | 7.2 | 5.3 | — | — | |
2 | N2 | 无 | THN | 37.9 | 22.1 | 15.8 | — | 0.75 | |
3 | N2 | 有 | 1-MN | 8.5 | 5.2 | 3.3 | — | — | |
4 | N2 | 有 | THN | 44.3 | 26.6 | 17.7 | — | 1.06 | |
5 | H2 | 无 | 1-MN | 14.5 | 8.4 | 6.1 | 0.34 | — | |
6 | H2 | 无 | THN | 41.3 | 26.2 | 15.1 | 0.16 | 0.72 | |
7 | H2 | 有 | 1-MN | 41.4 | 15.6 | 25.8 | 0.92 | — | |
8 | H2 | 有 | THN | 53.3 | 30.9 | 22.4 | 0.64 | 0.75 |
序号 | 反应气氛 | 催化剂 | 溶剂 | 煤转化率/% | 产率/% | 氢耗/g·(100g coal)-1 | |||
---|---|---|---|---|---|---|---|---|---|
PAA | Oil+Gas | H2 | Solvent | ||||||
1 | N2 | 无 | 1-MN | 12.5 | 7.2 | 5.3 | — | — | |
2 | N2 | 无 | THN | 37.9 | 22.1 | 15.8 | — | 0.75 | |
3 | N2 | 有 | 1-MN | 8.5 | 5.2 | 3.3 | — | — | |
4 | N2 | 有 | THN | 44.3 | 26.6 | 17.7 | — | 1.06 | |
5 | H2 | 无 | 1-MN | 14.5 | 8.4 | 6.1 | 0.34 | — | |
6 | H2 | 无 | THN | 41.3 | 26.2 | 15.1 | 0.16 | 0.72 | |
7 | H2 | 有 | 1-MN | 41.4 | 15.6 | 25.8 | 0.92 | — | |
8 | H2 | 有 | THN | 53.3 | 30.9 | 22.4 | 0.64 | 0.75 |
样品 | 元素分析(daf)/% | 工业分析/% | |||||||
---|---|---|---|---|---|---|---|---|---|
C | H | N | S | Oa | Mad | Ad | Vdaf | ||
长焰煤 | 80.64 | 4.95 | 1.17 | 0.48 | 12.76 | 4.73 | 8.34 | 37.32 | |
改性煤 | 85.51 | 5.68 | 0.93 | 0.82 | 7.06 | 3.72 | 8.75 | 35.23 |
样品 | 元素分析(daf)/% | 工业分析/% | |||||||
---|---|---|---|---|---|---|---|---|---|
C | H | N | S | Oa | Mad | Ad | Vdaf | ||
长焰煤 | 80.64 | 4.95 | 1.17 | 0.48 | 12.76 | 4.73 | 8.34 | 37.32 | |
改性煤 | 85.51 | 5.68 | 0.93 | 0.82 | 7.06 | 3.72 | 8.75 | 35.23 |
样品 | 自由基浓度Ng/spin·g-1 | 线宽?Hpp/Gs | GRI |
---|---|---|---|
长焰煤 | 1.02×1017 | 5.6 | 0 |
改性煤 | 0.98×1017 | 5.4 | 32 |
样品 | 自由基浓度Ng/spin·g-1 | 线宽?Hpp/Gs | GRI |
---|---|---|---|
长焰煤 | 1.02×1017 | 5.6 | 0 |
改性煤 | 0.98×1017 | 5.4 | 32 |
1 | 黄文辉, 杨起, 唐修义, 等. 中国炼焦煤资源分布特点与深部资源潜力分析[J]. 中国煤炭地质, 2010, 22(5): 1-6. |
HUANG Wenhui, YANG Qi, TANG Xiuyi, et al. Analysis on distribution characteristics and deep resource potential of coking coal in China [J]. Coal Geology of China, 2010, 22(5): 1-6. | |
2 | 黄澎. 低变质烟煤温和加氢改性过程试验研究[J]. 中国煤炭, 2017, 43(6): 97-101. |
HUANG Peng. Experimental study on mild hydrogenation of low metamorphic bituminous coal [J]. China's Coal, 2017, 43(6): 97-101. | |
3 | NANDI B N, TERNAN M, BELINKO K. Conversion of non-coking coals to coking coals by thermal hydrogenation [J]. Fuel, 1981, 60(4): 347-354. |
4 | SHUI Hengfu, LI Haiping, CHANG Hongtao. Modification of sub-bituminous coal by steam treatment: caking and coking properties [J]. Fuel Processing Technology, 2011, 92(12): 2299-2304. |
5 | MUKHERJEE D, SENGUPTA A, CHOUDHURY D. Effect of hydrothermal treatment on caking propensity of coal [J]. Fuel, 1996, 75(4): 477-482. |
6 | SEKI H, ITO O, IINO M. Effect of acetylation on caking properties of bituminous coals [J]. Energy Fuels, 1990, 4(4): 352-355. |
7 | 库哈连科 T A. 烟煤的初步加氢是认识和改变烟煤本性的方法[M]. 郑志永, 译. 北京: 地质出版社, 1959: 45-46. |
KUHARENKO T A. The preliminary hydrogenation of bituminous coal is a way to understand and change the nature of bituminous coal [M]. ZHENG Zhiyong, trans. Beijing: Geological Press, 1959: 45-46. | |
8 | 郝爱民, 李新生, 宋永玮. 煤的改性提质对水煤浆成浆性的影响[J]. 煤炭转化, 2001, 24(3): 47-50. |
HAO Aimin, LI Xinsheng, SONG Yongwei. Influence of coal modification and coal water slurry (CWS) quality on its slurry forming property [J]. Coal Conversion, 2001, 24(3): 47-50. | |
9 | 郑明东, 李正秋, 单海燕, 等. 高挥发分不黏煤的预热改质与成焦行为研究[J]. 燃料与化工, 2010, 41(2): 10-14. |
ZHENG Mingdong, LI Zhengqiu, SHAN Haiyan, et al. Study on preheating modification and coke forming behavior of high volatile non-sticky coal [J]. Fuel and Chemical Industry, 2010, 41(2): 10-14. | |
10 | WANG Zhicai, SHUI Hengfu, PEI Zhanning. Study on the hydrothermal treatment of Shenhua coal [J]. Fuel, 2008, 87(4/5): 527-533. |
11 | SHUI Hengfu, WANG Zhicai, WANG Gaoqiang. Effect of hydrothermal treatment on the extraction of coal in the CS2/NMP mixed solvent [J]. Fuel, 2006, 85(12/13): 1798-1802. |
12 | 胡德生, 水恒福, 孙维周, 等. 神府煤水热处理方法: CN102140356A [P]. 2011-08-03. |
HU Desheng, SHUI Hengfu, SUN Weizhou, et al. Shenfu coal water heat treatment method: CN102140356A [P]. 2011-08-03. | |
13 | 王东升. 低变质烟煤加氢增塑产物的工艺性质分析[J]. 煤质技术, 2010(6): 15-17. |
WANG Dongsheng. Analysis of process properties of hydroplasticized products of low metamorphic bituminous coal [J]. Coal Quality Technology, 2010(6): 15-17. | |
14 | 王东升, 黄澎, 白向飞. 低变质烟煤加氢增塑改质的试验研究[J]. 煤炭科学技术, 2008, 6(7): 104-106. |
WANG Dongsheng, HUANG Peng, BAI Xiangfei. Experimental study on hydroplasticizing and upgrading of low metamorphic bituminous coal [J]. Coal Science and Technology, 2008, 6(7): 104-106. | |
15 | ZHU Jisheng, YANG Jianli, LIU Zhenyu, et al. Improvement and characterization of an impregnated iron-based catalyst for direct coal liquefaction [J]. Fuel Processing Technology, 2001, 72(3): 199-214. |
16 | GUIN J A, ZHAN Xiaodong, LINHART R S. Coal liquefaction using a dispersed phase nanoscale iron oxyhydroxide catalyst [J]. Energy Fuel, 1994, 8(1): 105-112. |
17 | PAINTER P, CETIER R, PULATI N, et al. Dispersion of liquefaction catalysts in coal using ionic liquids [J]. Energy Fuel, 2010, 24: 3086-3092. |
18 | ZHAO Jianmin, FENG Zhen, HUGGINS F E, al at. Binary iron oxide catalysts for direct coal liquefaction [J]. Energy Fuel, 1994, 8(1): 38-43. |
19 | IKENGA N, TANGCHI H, WATANABLE A, et al. Sulfiding behavior of iron based coal liquefaction catalyst [J]. Fuel, 2000, 79: 273-283. |
20 | JIN Lijun, HAN Keming, WANG Jianyou, et al. Direct liquefaction behaviors of Bulianta coal and its macerals [J]. Fuel Processing Technology, 2014, 128: 232-237. |
21 | CUGISH A V, KRASTAN D, LETT R G, et al. Development of a dispersed iron catalyst for first stage coal liquefication [J]. Catalysis Today, 1994, 19(3): 395-407. |
22 | MPOCHI I, SAKANISH K. Catalysis in coal liquefaction [J]. Advances in Catalysis, 1994, 40(1): 39-85. |
23 | MOCHIDA I, SAKANISH K, SUZUK N, et al. Progresses of coal liquefaction catalysts in Japan [J]. Catalysis Surveys from Asia, 1998, 2(1): 17-30. |
24 | KANEKO T, TAZAWA K, OKOMA N. Effect of highly dispersed iron catalyst on direct liquefaction of coal [J]. Fuel, 2000, 79(3/4): 263-271. |
25 | LI Liang, HUANG Sheng, WU Shiyong, et al. Roles of Na2CO3 in lignite hydro-liquefaction with Fe-based catalyst [J]. Fuel Processing Technology, 2015, 138: 109-115. |
26 | CURRAN G P, STRUCK R T, GORIN E. Mechanism of hydrogen-transfer process to coal and coal extract [J]. Industrial & Engineering Chemistry Process Design and Development, 1967, 6(2): 166-173. |
27 | DING Weibing, LIANG Jing, ANDERSON L L. Kinetics of thermal and catalytic coal liquefaction with plastic-derived liquids as solvent [J]. Industrial & Engineering Chemistry Research, 1997, 36(5): 1444-1452. |
28 | SHARMA R K, YANG Jianli, ZONDLO J W, et al. Effect of process conditions on co-liquefaction kinetics of waste tire and coal [J]. Catalysis Today, 1998, 40(4): 307-320. |
29 | GRIEVA E N, PANCHENKO S S, KOROBKOV V Y, et al. Correlation between structure and reactivity of diarylmethanes as coal-related model substances [J]. Fuel Processing Technology, 1994, 41(1): 39-53. |
30 | ARTOK L, ERBATUR O, SCHOBERT H H. Reaction of dinaphthyl and diphenyl ethers at liquefaction conditions [J]. Fuel Processing Technology, 1996, 47(2): 153-176. |
31 | WANG Zhicai, WANG Qian, HU Runan, et al. Effect of thermal extraction on hydro-liquefaction property of residual coal [J]. Fuel, 2019, 251: 474-481. |
32 | 黄澎, 杜铭华, 李克健. 神华煤加氢增塑的研究[J]. 煤炭学报, 2009, 34(5): 683-687. |
HUANG Peng, DU Minghua, LI Kejian. Study on the caking improvement of Shenhua coal by hydrogenation [J]. Journal of China Coal Society, 2009, 34(5): 683-687. | |
33 | UEBERSFEID J, ÉTIENNE A, COMBRISSON J. Paramagnetic resonance, a new property of coal-like materials [J]. Nature, 1954, 174: 614. |
34 | 成茂, 王胜春, 张德祥. 煤转化过程自由基研究进展[J]. 煤炭转化, 2012, 12(4): 94-98. |
CHENG Mao, WANG Shengchun, ZHANG Dexiang. The research progress on free radicals in coal conversion process [J]. Coal Conversion, 2012, 12(4): 94-98. | |
35 | 邱冠周, 刘国根, 胡善亭, 等. 煤的ESR波谱研究[J]. 中南工业大学学报, 1997, 28(5): 427-429. |
QIU Guanzhou, LIU Guogen, HU shanting, et al. A study on ESR spectrum of caol[J]. Journal of Central South Universty of Technology, 1997, 28(5): 427-429. | |
36 | CHENG H N, WARTELLE L H, THOMAS K K. Solid-state NMR and ESR studies of activated carbons produced from pecan shells [J]. Carbon, 2010, 48(3): 2455-2469. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[3] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[4] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[5] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[6] | QIAN Sitian, PENG Wenjun, ZHANG Xianming. Comparative analysis of forming cyclic oligomers via PET melt polycondensation and cyclodepolymerization [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4808-4816. |
[7] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[8] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[9] | BAI Zhihua, ZHANG Jun. Oxidative removal of NO in DTPMPA/Fenton system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4967-4973. |
[10] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[11] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[12] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[13] | XU Peiyao, CHEN Biaoqi, KANKALA Ranjith Kumar, WANG Shibin, CHEN Aizheng. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3684-3694. |
[14] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[15] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 500
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 335
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |