Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (1): 247-258.DOI: 10.16085/j.issn.1000-6613.2020-0432
• Materials science and technology • Previous Articles Next Articles
Bin LYU1,2(), Xu GUO1,2, Dangge GAO1,2(), Jianzhong MA1,2, Dong MA3
Received:
2020-03-23
Online:
2021-01-12
Published:
2021-01-05
Contact:
Dangge GAO
吕斌1,2(), 郭旭1,2, 高党鸽1,2(), 马建中1,2, 麻冬3
通讯作者:
高党鸽
作者简介:
吕斌(1980—),男,博士,教授,博士生导师,研究方向为有机-无机纳米复合材料。E-mail:基金资助:
CLC Number:
Bin LYU, Xu GUO, Dangge GAO, Jianzhong MA, Dong MA. Research progress on the improvement of the stability of perovskite quantum dots[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 247-258.
吕斌, 郭旭, 高党鸽, 马建中, 麻冬. 提高钙钛矿量子点稳定性的研究进展[J]. 化工进展, 2021, 40(1): 247-258.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0432
1 | ROSE G. Beschreibung einiger neuen mineralien des urals[J]. Annalen der Physik, 1839, 124(12): 551-573. |
2 | 王汝成, 徐士进, 陆建军, 等. 钙钛矿族矿物的晶体化学分类和地球化学演化[J]. 地学前缘, 2000, 7(2): 457-465. |
WANG Rucheng, XU Shijin, LU Jianjun, et al. Crystal-chemistry and geochemistry of perovskite-group minerals[J]. Earth Science Frontiers, 2000, 7(2): 457-465. | |
3 | WELLS H L. Über die cäsium-und kalium-bleihalogenide[J]. Zeitschrift Für Anorganische Chemie, 1893, 3(1): 195-210. |
4 | KOJIMA A, TESHIMA K, SHIRAL Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. |
5 | IM J H, LEE C R, LEE J W, et al. 6.5% Efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale, 2011, 3(10): 4088-4093. |
6 | 韦祎, 陈叶青, 程子泳, 等. 如何提升铅卤钙钛矿量子点的稳定性[J]. 中国科学: 化学, 2018, 48(8): 9-27. |
WEI Yi, CHEN Yeqin, CHENG Ziyong, et al. How to enhance the stability of lead halide perovskite quantum dots?[J]. Scientla Sinica Chimica, 2018, 48(8): 9-27. | |
7 | LIN K, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20%[J]. Nature, 2018, 562(7726): 245-248. |
8 | YANG G L, ZHONG H Z. Organometal halide perovskite quantum dots: synthesis, optical properties, and display applications[J]. Chinese Chemical Letters, 2016, 27(8): 1124-1130. |
9 | GOLDSCHIDT V M. Geochemische verteilungsgesetze der elemente. skrifter norske videnskaps[J]. Akad. Oslo I. Mat-Nat. K1, 1926, 8(6/7): 112-117. |
10 | BARTEL C J, SUTTON C, GOLDSMITH B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides[J]. Science Advances, 2019, 5(2): eaav0693. |
11 | TRAVIS W, GLOVER E N K, BRONSTEIN H, et al. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system[J]. Chemical Science, 2016, 7(7): 4548-4556. |
12 | PROTESESCU L, YAKUNIN S, KUMAR S, et al. Dismantling the “red wall” of colloidal perovskites: highly luminescent formamidinium and formamidinium-cesium lead iodide nanocrystals[J]. ACS Nano, 2017, 11(3): 3119-3134. |
13 | MEYNS M, PERALVAREZ M, HEUER J A, et al. Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs[J]. ACS Applied Materials & Interfaces, 2016, 8(30): 19579-19586. |
14 | LIN J, GOMEZ L D, WEERD C, et al. Direct observation of band structure modifications in nanocrystals of CsPbBr3 perovskite[J]. Nano Letters, 2016, 16(11): 7198-7202. |
15 | ZHANG M, YU H, LYU M, et al. Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr3-xClx films[J]. Chemical Communications, 2014, 50(79): 11727-11730. |
16 | CHEN J, LIU D, AL-MARRIi M J, et al. Photo-stability of CsPbBr3 perovskite quantum dots for optoelectronic application[J]. Science China Materials, 2016, 59(9): 719-727. |
17 | LI J, XU L, WANG T, et al. 50-Fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control[J]. Advanced Materials, 2017, 29(5): 1603885. |
18 | ZHANG M, TIAN Z Q, ZHU D L, et al. Stable CsPbBr3 perovskite quantum dots with high fluorescence quantum yields[J]. New Journal of Chemistry, 2018, 42(12): 9496-9500. |
19 | DE ROO J, IBÁŇEZ M, GEIREGAT P, et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals[J]. ACS Nano, 2016, 10(2): 2071-2081. |
20 | CHEN M, JU M G, GARCES H F, et al. Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation[J]. Nature Communications, 2019, 10(1): 16. |
21 | LINABURG M R, MCLURE E T, MAJHER J D, et al. Cs1-xRbxPbCl3 and Cs1-xRbxPbBr3 solid solutions: understanding octahedral tilting in lead halide perovskites[J]. Chemistry of Materials, 2017, 29(8): 3507-3514. |
22 | BAEK S, KIM S, NOH J Y, et al. Development of mixed-cation CsxRb1-xPbX3 perovskite quantum dots and their full-color film with high stability and wide color gamut[J]. Advanced Optical Materials, 2018, 6(15): 1800295. |
23 | WU H, YANG Y, ZHOU D, et al. Rb+ cations enable the change of luminescence properties in perovskite (RbxCs1-xPbBr3) quantum dots[J]. Nanoscale, 2018, 10(7): 3429-3437. |
24 | LIU Y, PAN G, WANG R, et al. Considerably enhanced exciton emission of CsPbCl3 perovskite quantum dots by the introduction of potassium and lanthanide ions[J]. Nanoscale, 2018, 10(29): 14067-14072. |
25 | HUANG S, WANG B, ZHANG Q, et al. Postsynthesis potassium-modification method to improve stability of CsPbBr3 perovskite nanocrystals[J]. Advanced Optical Materials, 2018, 6(6): 1701106. |
26 | KIM J, LEE S C, LEE S H, et al. Importance of orbital interactions in determining electronic band structures of organo-lead iodide[J]. The Journal of Physical Chemistry C, 2015, 119(9): 4627-4634. |
27 | SALIBA M, MATSUI T, SEO J Y, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency[J]. Energy & Environmental Science, 2016, 9(6): 1989-1997. |
28 | GKINI K, ANTONIADOU M, BALIS N, et al. Mixing cations and halide anions in perovskite solar cells[J]. Materials Today: Proceedings, 2019, 19: 73-78. |
29 | TOSADO G A, LIN Y Y, ZHENG E, et al. Impact of cesium on the phase and device stability of triple cation Pb-Sn double halide perovskite films and solar cells[J]. Journal of Materials Chemistry A, 2018, 6(36): 17426-17436. |
30 | BRENNER P, Glöckler T, RUEDA-DELGADO D, et al. Triple cation mixed-halide perovskites for tunable lasers[J]. Optical Materials Express, 2017, 7(11): 4082-4094. |
31 | ZHOU Y, CHEN J, BAKR O M, et al. Metal-doped lead halide perovskites: synthesis, properties, and optoelectronic applications[J]. Chemistry of Materials, 2018, 30(19): 6589-6613. |
32 | LIU W, LIN Q, LI H, et al. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content[J]. Journal of the American Chemical Society, 2016, 138(45): 14954-14961. |
33 | PAROBEK D, ROMAN B J, DONG Y, et al. Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals[J]. Nano Letters, 2016, 16(12): 7376-7380. |
34 | LIU H, WU Z, SHAO J, et al. CsPbxMn1-xCl3 perovskite quantum dots with high Mn substitution ratio[J]. ACS Nano, 2017, 11(2): 2239-2247. |
35 | DONG L, CHEN Z, YE L, et al. Gram-scale synthesis of all-inorganic perovskite quantum dots with high Mn substitution ratio and enhanced dual-color emission[J]. Nano Research, 2019, 12(7): 1733-1738. |
36 | ZOU S, LIU Y, LI J, et al. Stabilizing cesium lead halide perovskite lattice through Mn(Ⅱ) substitution for air-stable light-emitting diodes[J]. Journal of the American Chemical Society, 2017, 139(33): 11443-11450. |
37 | PAROBEK D, DONG Y, QIAO T, et al. Direct hot-injection synthesis of Mn-doped CsPbBr3 nanocrystals[J]. Chemistry of Materials, 2018, 30(9): 2939-2944. |
38 | FEI L, YUAN X, HUA J, et al. Enhanced luminescence and energy transfer in Mn2+ doped CsPbCl3-xBrx perovskite nanocrystals[J]. Nanoscale, 2018, 10(41): 19435-19442. |
39 | WEI Q, LI M, ZHANG Z, et al. Efficient recycling of trapped energies for dual-emission in Mn-doped perovskite nanocrystals[J]. Nano Energy, 2018, 51: 704-710. |
40 | LOZHKINA O A, MURASHKINA A A, SHILOVSKIKH V V, et al. Invalidity of band-gap engineering concept for Bi3+ heterovalent doping in CsPbBr3 halide perovskite[J]. The Journal of Physical Chemistry Letters, 2018, 9(18): 5408-5411. |
41 | ZHOU Y, YONG Z J, ZHANG K C, et al. Ultrabroad photoluminescence and electroluminescence at new wavelengths from doped organometal halide perovskites[J]. The Journal of Physical Chemistry Letters, 2016, 7(14): 2735-2741. |
42 | NAVAS J, SANCHEZ-CORONILLA A, GALLARDO J J, et al. New insights into organic-inorganic hybrid perovskite CH3NH3PbI3 nanoparticles. an experimental and theoretical study of doping in Pb2+ sites with Sn2+, Sr2+, Cd2+ and Ca2+[J]. Nanoscale, 2015, 7(14): 6216-6229. |
43 | LIANG J, ZHAO P, WANG C, et al. CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability[J]. Journal of the American Chemical Society, 2017, 139(40): 14009-14012. |
44 | HU Y, ZHANG X, YANG C, et al. Fe2+ doped in CsPbCl3 perovskite nanocrystals: impact on the luminescence and magnetic properties[J]. RSC Advances, 2019, 9(57): 33017-33022. |
45 | ZOU S, YANG G, YANG T, et al. Template-free synthesis of high-yield Fe-doped cesium lead halide perovskite ultralong microwires with enhanced two-photon absorption[J]. The Journal of Physical Chemistry Letters, 2018, 9(17): 4878-4885. |
46 | ZHANG X, WANG Q, JIN Z, et al. Stable ultra-fast broad-bandwidth photodetectors based on α-CsPbI3 perovskite and NaYF4: Yb, Er quantum dots[J]. Nanoscale, 2017, 9(19): 6278-6285. |
47 | YUAN R, LIU J, ZHANG H, et al. Eu3+-doped CsPbBr1.5I1.5 quantum dots glasses: a strong competitor among red fluorescence solid materials[J]. Journal of the American Ceramic Society, 2018, 101(11): 4927-4932. |
48 | WU L, ZHONG Q, YANG D, et al. Improving the stability and size tunability of cesium lead halide perovskite nanocrystals using trioctylphosphine oxide as the capping ligand[J]. Langmuir, 2017, 33(44): 12689-12696. |
49 | XUAN T, YANG X, LOU S, et al. Highly stable CsPbBr3 quantum dots coated with alkyl phosphate for white light-emitting diodes[J]. Nanoscale, 2017, 9(40): 15286-15290. |
50 | LIU F, ZHANG Y, DING C, et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield[J]. ACS Nano, 2017, 11(10): 10373-10383. |
51 | CHIBA T, HAYASHI Y, EBE H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices[J]. Nature Photonics, 2018, 12(11): 681-687. |
52 | LI Z, KONG L, HUANG S, et al. Highly luminescent and ultrastable CsPbBr3 perovskite quantum dots incorporated into a silica/alumina monolith[J]. Angewandte Chemie: International Edition, 2017, 56(28): 8134-8138. |
53 | KOSCHER B A, SWABECK J K, BRONSTEIN N D, et al. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment[J]. Journal of the American Chemical Society, 2017, 139(19): 6566-6569. |
54 | LOU Y, NIU Y, YANG D, et al. Rod-shaped thiocyanate-induced abnormal band gap broadening in SCN-doped CsPbBr3 perovskite nanocrystals[J]. Nano Research, 2018, 11(5): 2715-2723. |
55 | FANG X, DING J, YUAN N, et al. Graphene quantum dot incorporated perovskite films: passivating grain boundaries and facilitating electron extraction[J]. Physical Chemistry Chemical Physics, 2017, 19(8): 6057-6063. |
56 | ZHAO H, BENETTI D, TONG X, et al. Efficient and stable tandem luminescent solar concentrators based on carbon dots and perovskite quantum dots[J]. Nano Energy, 2018, 50: 756-765. |
57 | HUANG H, CHEN B, WANG Z, et al. Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices[J]. Chemical Science, 2016, 7(9): 5699-5703. |
58 | JIANG G, GUHRENZ C, KIRCH A, et al. Highly luminescent and water-resistant CsPbBr3-CsPb2Br5 perovskite nanocrystals coordinated with partially hydrolyzed poly(methyl methacrylate) and polyethylenimine[J]. ACS Nano, 2019, 13(9): 10386-10396. |
59 | YANG D, LI X, ZHOU W, et al. CsPbBr3 quantum dots 2.0: benzenesulfonic acid equivalent ligand awakens complete purification[J]. Advanced Materials, 2019, 31(30): 1900767. |
60 | KONTOS A G, KALTZOGLOU A, SIRANIDI E, et al. Structural stability, vibrational properties, and photoluminescence in CsSnI3 perovskite upon the addition of SnF2[J]. Inorganic Chemistry, 2016, 56(1): 84-91. |
61 | WANG A, GUO Y, MUHAMMAD F, et al. Controlled synthesis of lead-free cesium tin halide perovskite cubic nanocages with high stability[J]. Chemistry of Materials, 2017, 29(15): 6493-6501. |
62 | 洪秀萍, 梁汉东, 马步君. 贺兰山北段羊氟中毒区氟污染研究[J]. 地球与环境, 2019, 9(5): 644-652. |
HONG Xiuping, LIANG Handong, MA Bujun. Study on fluoride pollution in sheep fluorosis area in the north of helan mountain[J]. Earth and Environment, 2019, 9(5): 644-652. | |
63 | KUMA A, RAWAT S S, SWAMI S K, et al. Benzoyl halide as alternative precursor for synthesis of lead free double perovskite Cs3Bi2Br9 nanocrystals[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(6): 3802-3808. |
64 | 樊钦华, 祖延清, 李璐, 等. 发光铅卤钙钛矿纳米晶稳定性的研究进展[J]. 物理学报, 2020, 69(11): 118501. |
FAN Qinhua, ZU Yanqing, LI Lu, et al. Research progress of stability of luminous lead halide perovskite nanocrystals[J]. Acta Physica Sinica, 2020, 69(11): 118501. | |
65 | BI C, KERSHAW S V, ROGACH A L, et al. Improved stability and photodetector performance of CsPbI3 perovskite quantum dots by ligand exchange with aminoethanethiol[J]. Advanced Functional Materials, 2019, 29(29): 1902446. |
66 | ZENG F, YANG M, QIN J, et al. Ultrastable luminescent organic-inorganic perovskite quantum dots via surface engineering: coordination of methylammonium bromide and covalent silica encapsulation[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42837-42843. |
67 | YANG M, PENG H, ZENG F, et al. In situ silica coating-directed synthesis of orthorhombic methylammonium lead bromide perovskite quantum dots with high stability[J]. Journal of Colloid and Interface Science, 2018, 509: 32-38. |
68 | HUANG S, LI Z, KONG L, et al. Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “waterless” toluene[J]. Journal of the American Chemical Society, 2016, 138(18): 5749-5752. |
69 | LOIUDICE A, SARIS S, OVEISI E, et al. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat[J]. Angewandte Chemie: International Edition, 2017, 56(36): 10696-10701. |
70 | LI Z J, HOFMAN E, LI J, et al. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals[J]. Advanced Functional Materials, 2018, 28(1): 1704288. |
71 | SUN J Y, RABOUW F T, YANG X F, et al. Facile two-step synthesis of all-inorganic perovskite CsPbX3 (X=Cl, Br, and I) zeolite-Y composite phosphors for potential backlight display application[J]. Advanced Functional Materials, 2017, 27(45): 1704371. |
72 | CHEN Z, GU Z G, FU W Q, et al. A confined fabrication of perovskite quantum dots in oriented MOF thin film[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 28737-28742. |
73 | ZHANG D, XU Y, LIU Q, et al. Encapsulation of CH3NH3PbBr3 perovskite quantum dots in MOF-5 microcrystals as a stable platform for temperature and aqueous heavy metal ion detection[J]. Inorganic Chemistry, 2018, 57(8): 4613-4619. |
74 | HE H, CUI Y, LI B, et al. Confinement of Perovskite-QDs within a single MOF crystal for significantly enhanced multiphoton excited luminescence[J]. Advanced Materials, 2019, 31(6): 1806897. |
75 | WAN S, OU M, ZHONG Q, et al. Perovskite-type CsPbBr3 quantum dots/UiO-66(NH2) nanojunction as efficient visible-light-driven photocatalyst for CO2 reduction[J]. Chemical Engineering Journal, 2019, 358: 1287-1295. |
76 | WU T, LIU X, LIU Y, et al. Application of QD-MOF composites for photocatalysis: energy production and environmental remediation[J]. Coordination Chemistry Reviews, 2020, 403: 213097. |
77 | WU L Y, MU Y F, GUO X X, et al. Encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for efficient photocatalytic CO2 reduction[J]. Angewandte Chemie: International Edition, 2019, 58(28): 9491-9495. |
78 | AKKERMAN Q A, PARK S, RADICCHI E, et al. Nearly monodisperse insulator Cs4PbX6 (X= Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 nanocrystals[J]. Nano Letters, 2017, 17(3): 1924-1930. |
79 | WU L, HU H, XU Y, et al. From nonluminescent Cs4PbX6 (X= Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: water-triggered transformation through a CsX-stripping mechanism[J]. Nano Letters, 2017, 17(9): 5799-5804. |
80 | YU X, WU L, HU H, et al. Cs4PbX6 (X= Cl, Br, I) nanocrystals: preparation, water-triggered transformation behavior, and anti-counterfeiting application[J]. Langmuir, 2018, 34(35): 10363-10370. |
81 | XU L, CHEN J, SONG J, et al. Double-protected all-inorganic perovskite nanocrystals by crystalline matrix and silica for triple-modal anti-counterfeiting Codes[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 26556-26564. |
82 | TANG Y, CAO X, HONARFAR A, et al. Inorganic ions assisted the anisotropic growth of CsPbCl3 nanowires with surface passivation effect[J]. ACS Applied Materials & Interfaces, 2018, 10(35): 29574-29582. |
83 | YANG S, CHEN S, MOSCONI E, et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts[J]. Science, 2019, 365(6452): 473-478. |
84 | DI X, HU Z, JIANG J, et al. Use of long-term stable CsPbBr3 perovskite quantum dots in phospho-silicate glass for highly efficient white LEDs[J]. Chemical Communications, 2017, 53(80): 11068-11071. |
85 | AI B, LIU C, WANG J, et al. Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses[J]. Journal of the American Ceramic Society, 2016, 99(9): 2875-2877. |
86 | WEI Y, DENG X, XIE Z, et al. Enhancing the stability of perovskite quantum dots by encapsulation in crosslinked polystyrene beads via a swelling-shrinking strategy toward superior water resistance[J]. Advanced Functional Materials, 2017, 27(39): 1703535. |
87 | LIANG X, CHEN M, WANG Q, et al. Ethanol-precipitable, silica-passivated perovskite nanocrystals incorporated into polystyrene microspheres for long-term storage and reusage[J]. Angewandte Chemie, 2019, 131(9): 2825-2829. |
88 | PARK J, MURALI G, KWON B, et al. Mussel-inspired polymer grafting on CsPbBr3 perovskite quantum dots enhancing the environmental stability[J]. Particle & Particle Systems Characterization, 2019, 36(12): 1900332. |
89 | ZHANG H, WANG X, LIAO Q, et al. Embedding perovskite nanocrystals into a polymer matrix for tunable luminescence probes in cell imaging[J]. Advanced Functional Materials, 2017, 27(7): 1604382. |
90 | ZHANG M, WANG M, YANG Z, et al. Preparation of all-inorganic perovskite quantum dots-polymer composite for white LEDs application[J]. Journal of Alloys and Compounds, 2018, 748: 537-545. |
91 | AN H, KIM W K, WU C, et al. Highly-stable memristive devices based on poly(methylmethacrylate): CsPbCl3 perovskite quantum dot hybrid nanocomposites[J]. Organic Electronics, 2018, 56: 41-45. |
92 | XUAN T, HUANG J, LIU H, et al. Super-hydrophobic cesium lead halide perovskite quantum dot-polymer composites with high stability and luminescent efficiency for wide color gamut white light-emitting diodes[J]. Chemistry of Materials, 2019, 31(3): 1042-1047. |
93 | MEYNS M, PERÁLVAREZ M, HEUER-JUNGEMANN A, et al. Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs[J]. ACS Applied Materials & Interfaces, 2016, 8(30): 19579-19586. |
94 | GIURI A, MASI S, LISTORTI A, et al. Polymeric rheology modifier allows single-step coating of perovskite ink for highly efficient and stable solar cells[J]. Nano Energy, 2018, 54: 400-408. |
95 | ZHANG X, WANG H C, TANG A C, et al. Robust and stable narrow-band green emitter: an option for advanced wide-color-gamut backlight display[J]. Chemistry of Materials, 2016, 28(23): 8493-8497. |
96 | WANG A, GUO Y, MUHAMMAD, et al. Controlled synthesis of lead-free cesium tin halide perovskite cubic nanocages with high stability[J]. Chemistry of Materials, 2017, 29(15): 6493-6501. |
[1] | LI Huaquan, WANG Minghua, QIU Guibao. Behavior of sulfuric acid acidolysis of perovskite concentrates [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 536-541. |
[2] | LEI Wei, JIANG Weijia, WANG Yugao, HE Minghao, SHEN Jun. Synthesis of N,S co-doped coal-based carbon quantum dots by electrochemical oxidation and its application in Fe3+ detection [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4799-4807. |
[3] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[4] | WANG Xin, WANG Bingbing, YANG Wei, XU Zhiming. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321. |
[5] | ZHANG Yaojie, ZHANG Chuanxiang, SUN Yue, ZENG Huihui, JIA Jianbo, JIANG Zhendong. Application of coal-based graphene quantum dots in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4340-4350. |
[6] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[7] | ZHENG Mengqi, WANG Chengye, WANG Yan, WANG Wei, YUAN Shoujun, HU Zhenhu, HE Chunhua, WANG Jie, MEI Hong. Application and prospect of algal-bacterial symbiosis technology in zero liquid discharge of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4424-4431. |
[8] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
[9] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[10] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
[11] | XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633. |
[12] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[13] | DONG Xiaoshan, WANG Jian, LIN Fawei, YAN Beibei, CHEN Guanyi. Exsolved metal nanoparticles on perovskite oxides: exsolution, driving force and control strategy [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3049-3065. |
[14] | XU Guobin, LIU Honghao, LI Jie, GUO Jiaqi, WANG Qi. Preparation and properties of ZnO QDs water-based inkjet fluorescent ink [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3114-3122. |
[15] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |