[1] 陈光文,袁权. 微化工技术[J]. 化工学报,2003,54(4):427-439. CHEN G W,YUAN Q. Micro-chemical technology[J]. J. Chem. Ind. Eng.(China),2003,54(4):427-439.
[2] MENECH M D,GARSTECKI P,JOUSSE F,et al. Transition from squeezing to dripping in a microfluidic T-shaped junction[J]. J. Fluid. Mech.,2008,595:141-161.
[3] ANNA S L,BONTOUX N,STONE H A. Formation of dispersions using "flow focusing" in microchannels[J]. Appl. Phys. Lett.,2003,82(3):364-367.
[4] XU J H,LI S W,and LAN W J. Microfluidic approach for rapid interfacial tension measurement[J]. Langmuir,2008,24(19):11287-11292.
[5] LINK D R,ANNA S L,WEITZ D A. Geometrically mediated breakup of drops in microfluidic devices[J]. Phys. Rev. Lett.,2004,92(5):054503-054504.
[6] [2016-12-01]. www.microchem.com.cn[z].
[7] SONG H,TICE J D,ISMAGILOV R F. A microfluidic system for controlling reaction networks in time[J]. Angew. Chem. Int. Ed.,2003,42(7):768-772.
[8] CHEN L,TIAN Y S,KARAYIANNIS T G. The effect of tube diameter on vertical two-phase flow regimes in small tubes[J]. Int. J. Heat Mass Tran.,2006,49(21):4220-4230.
[9] EHRFELD W,HESSEL V,LÖWE H. Microreactors[M]. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA,2004:87-92.
[10] REAY D,RAMSHAW C,HARVEY A. Process intensification[M]. 2nd. Oxford:Butterworth-Heinemann, 2013:91-102.
[11] HALDER R,LAWAL A,DAMAVARAPU R. Nitration of toluene in a microreactor[J]. Catal. Today,2007,125(1):74-80.
[12] STAVAREK P,VAJGLOVA Z,KRISTAL J,et al. Self-sustained oscillations of temperature and conversion in a packed bed microreactor during 2-methylpropene (isobutene) hydrogenation[J]. Catal. Today,2015,256(2):250-260.
[13] KIM D H,KIM S H,BYUN J Y. A microreactor with metallic catalyst support for hydrogen production by partial oxidation of dimethyl ether[J]. Chem. Eng. J.,2015,280:468-474.
[14] JIANG B,MAEDER T,SANTIS-ALVAREZ A J,et al. A low-temperature co-fired ceramic micro-reactor system for high-efficiency on-site hydrogen production[J]. J. Power Sources,2015,273:1202-1217.
[15] FEDERICI J A,VLACHOS D G. Experimental studies on syngas catalytic combustion on Pt/Al2O3 in a microreactor[J]. Combust. Flame,2011,158(12):2540-2543.
[16] WANG F,CAO Y,WANG G. Thermoelectric generation coupling methanol steam reforming characteristic in microreactor[J]. Energy,2015,80:642-653.
[17] XU L,SRINIVASAKANNAN C,PENG J,et al. Synthesis of nickel nanoparticles by aqueous reduction in continuous flow microreactor[J]. Chem. Eng. Process:Process Intensification,2015,93(16):44-49.
[18] SCHÖNFELD H,HUNGER K,CECILIA R,et al. Enhanced mass transfer using a novel polymer/carrier microreactor[J]. Chem. Eng. J.,2004,101(1):455-463.
[19] ZHAO Y,SU Y,CHEN G,et al. Effect of surface properties on the flow characteristics and mass transfer performance in microchannels[J]. Chem. Eng. Sci.,2010,65:1563-1570.
[20] IWASAKI T,TOSHIDA J I. Free radical polymerization in microreactors. significant improvement in molecular weight distribution control[J]. Macromolecules,2007,38(4):1159-1163.
[21] WAKAMI H,YOSHIDA J I. Grignard exchange reaction using a microflow system:from bench to pilot plant[J]. Org. Process Res. Dev.,2005,9(6):787-791.
[22] RICHARD D,CHAMBERS M A,FOX D H,et al. Elemental fluorine Part 16. Versatile thin-film gas-liquid multi-channel microreactors for effective scale-out[J]. Lab Chip,2005,5(2):191-198.
[23] HESSEL V,KRALISCH D,KOCKMANN N,et al. Novel process windows for enabling,accelerating,and uplifting flow chemistry[J]. ChemSusChem,2013,6(5):746-789.
[24] DAMM M,GLASNOV T N,KAPPE C O. Translating high-temperature microwave chemistry to scalable continuous flow processes[J]. Org. Process Res. Dev.,2010,14(1):215-224.
[25] SAUKS J M,MALLIK D,LAWRYSHYN Y,et al. A continuous-flow microwave reactor for conducting high-temperature and high-pressure chemical reactions[J]. Org. Process Res. Dev.,2014,18(11):1310-1314.
[26] BORUKHOVA S,NOËL T,METTEN B,et al. Solvent-and catalyst-free huisgen cycloaddition to rufinamide in flow with a greener,less expensive dipolarophile[J]. ChemSusChem,2013,6(12):2220-2225.
[27] BEDORE M W,ZABORENKO N,JENSEN K F,et al. Aminolysis of epoxides in a microreactor system:a continuous flow approach to β-amino alcohols[J]. Org. Process Res. Dev.,2010,14(2):432-440.
[28] DAMM M,GLASNOV T N,KAPPE C O. Translating high-temperature microwave chemistry to scalable continuous flow processes[J]. Org. Process Res. Dev.,2010,14(1):215-224.
[29] RAZZAQ T,GLASNOV T N,KAPPE C O. Accessing novel process windows in a high-temperature/pressure capillary flow reactor[J]. Chem. Eng. Technol.,2009,32(11):1702-1716.
[30] KOBAYASHI H,DRIESSEN B,VAN OSCH D J G P,et al. The impact of novel process windows on the claisen rearrangement[J]. Tetrahedron,2013,69(14):2885.
[31] TILSTAM U,DEFRANCE T,GIARD T,The Newman-Kwart rearrangement revisited:continuous process under supercritical conditions[J]. Org. Process Res. Dev.,2009,13(2):321-323.
[32] KEYBL J,JENSEN K F. Microreactor system for high-pressure continuous flow homogeneous catalysis measurements[J]. Ind. Eng. Chem. Res.,2011,50(19):11013.
[33] MARRE S,ADAMO A,BASAK S,et al. Design and packaging of microreactors for high pressure and high temperature applications[J]. Ind. Eng. Chem. Res.,2010,49(22):11310-11320.
[34] CANTILLO D,KAPPE C O. Direct preparation of nitriles from carboxylic acids in continuous flow[J]. J. Org. Chem.,2013,78(20):10567-10571.
[35] HINTERMAIR U,FRANCIL G,LEITNER W. A fully integrated continuous-flow system for asymmetric catalysis:enantioselective hydrogenation with supported ionic liquid phase catalysts using supercritical CO2 as the mobile phase[J]. Chem. Eur. J.,2013,19(14):4538-4547.
[36] TIGGELAAR R M,BENITO-LOPEZ F,HERMES D C,et al. Fabrication,mechanical testing and application of high-pressure glass microreactor chips[J]. Chem. Eng. J.,2007,131:163-170.
[37] WANG X,NIE Y,LEE J L C,et al. Evaluation of multiphase microreactors for the direct formation of hydrogen peroxide[J]. Appl. Catal. A:Gen.,2007,317(2):258-265.
[38] NG J F,NIE Y,CHUAH G K,et al. A wall-coated catalytic capillary microreactor for the direct formation of hydrogen peroxide[J]. J. Catal.,2010,269(2):302-308.
[39] INOUE T,OHTAKI K,ADACHI J,LU M,et al. Direct synthesis of hydrogen peroxide using glass fabricated microreactor-Multichannel operation and catalyst comparison[J]. Catal. Today,2015,248(15):169-176.
[40] RATCHANANUSORN W,GUDARZI D,TURUNEN I. Catalytic direct synthesis of hydrogen peroxide in a novel microstructured reactor[J]. Chem. Eng. Process:Proc. Intens,2014,84:24-30.
[41] PAUNOVIC V,ORDOMSKY V,FERNANDA NEIRA D'ANGELO M,et al. Direct synthesis of hydrogen peroxide over Au-Pd catalyst in a wall-coated microchannel[J]. J. Catal.,2014,309:325-332.
[42] SALMI T,HERNÁNDEZ CARUCCI J,ROCHE M,et al. Microreactors as tools in kinetic investigations:ethylene oxide formation on silver catalyst[J]. Chem. Eng. Sci.,2013,87:306-314.
[43] BAUMANN M,BAXENDALE I R,MARTIN L J. Development of fluorination methods using continuous-flow microreactors[J]. Tetrahedron,2009,65:6611-6625.
[44] CHAMBERS R D,SPINK R C H. Microreactors for elemental fluorine[J]. Chem. Commun.,1999,10:883-884.
[45] BREEN J R,SANDFORD G,YUFIT D S,et al. Continuous gas/liquid-liquid/liquid flow synthesis of 4-fluoropyrazole derivatives by selective direct fluorination[J]. Beilstein J. Org. Chem.,2011,7:1048-1054.
[46] FUSE S,MIFUNE Y,TAKAHASHI T. Efficient amide bond formation through a rapid and strong activation of carboxylic acids in a microflow reactor[J]. Angew. Chem. Int. Ed.,2014,53(3):851-855.
[47] FUSE S,TANABE N,TAKAHASHI T. Continuous in situ generation and reaction of phosgene in a microflow system[J]. Chem. Commun.,2011,47:12661-12663.
[48] RAHMAN M T,FUKUYAMA T,KAMATA N,et al. Low pressure Pd-catalyzed carbonylation in an ionic liquid using a multiphase microflow system[J]. Chem. Commun.,2006,26:2236.
[49] BASAVARAJU K C,SHARMA S,MAURYA R A,et al. Safe use of a toxic compound:heterogeneous OsO4 catalysis in a nanobrush polymer microreactor[J]. Angew. Chem. Int. Ed.,2013,52(26):6735-6738.
[50] EBRAHIMI F,KOLEHMAINEN E,OINAS P,et al. Production of unstable percarboxylic acids in a microstructured reactor[J]. Chem. Eng. J.,2011,167(2/3):713-717.
[51] KAWAGUCHI T,MIYATA H,ATAKA L,et al. Room-temperature swern oxidations by using a microscale flow system[J]. Angew. Chem. Int. Ed.,2005,44(11):2413-2416.
[52] MAURYA R A,PARK C P,LEE J H,et al. Continuous in situ generation,separation,and reaction of diazomethane in a dual-channel microreactor[J]. Angew. Chem. Int. Ed.,2011,50(26):5952-5955. |