Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S1): 326-333.DOI: 10.16085/j.issn.1000-6613.2021-0352
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
Received:
2021-02-20
Revised:
2021-03-01
Online:
2021-11-09
Published:
2021-10-25
Contact:
CHEN Lurui
通讯作者:
陈露蕊
作者简介:
陈露蕊(1996—),女,硕士,研究方向为环境生物技术。E-mail:基金资助:
CLC Number:
CHEN Lurui, CAO Lifeng. Effect of temperature on anaerobic hydrogenotrophic methanogenesis and microbial community: a review[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 326-333.
陈露蕊, 曹利锋. 温度对厌氧耗氢产甲烷的影响研究进展[J]. 化工进展, 2021, 40(S1): 326-333.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0352
分类 | 形态学 | 属名 | 最适温度/℃ |
---|---|---|---|
甲烷 微菌目 | 短杆、不规则球状 | Methanoculleus hydrogenitrophicus | 37 |
Methanoregula boonei | 35~37 | ||
Methanolacinia paynteri | 40 | ||
Methanocella conradii | 50~55 | ||
甲烷 球菌目 | 不规则 球状 | Methanococcus maripaludis | 85 |
Methanocaldococcus vulcanius | 80 | ||
Methanocaldococcus villosus | 80 | ||
Methanocaldococcus jannaschii | 85 | ||
Methanocaldococcus infernus | 85 | ||
Methanocaldococcus indicus | 85 | ||
Methanocaldococcus fervens | 85 | ||
甲烷 杆菌目 | 杆状为主 | Methanobacterium movens | 35~38 |
Methanobacterium bryantii | 37 | ||
Methanothermobacter tenebrarum | 70 | ||
Methanothermobacter marburgensis | 65 | ||
Methanothermobacter thermautotrophicus | 65~70 | ||
Methanothermobacter wolfeii | 55~65 | ||
Methanobrevibacter wolinii | 37 | ||
Methanobrevibacter thaueri | 37 | ||
Methanobrevibacter oralis | 35~37 | ||
Methanobrevibacter gottschalkii | 37 | ||
Methanobrevibacter filiformis | 30 | ||
Methanobrevibacter curvatus | 30 | ||
Methanobrevibacter arboriphilus | 30~37 | ||
Methanobrevibacter acididurans | 35 | ||
Methanobacterium petrolearium | 35 | ||
Methanobacterium ferruginis | 40 | ||
Methanobacterium espanolae | 35 | ||
Methanobacterium congolense | 37~42 | ||
Methanobacterium aarhusense | 45 | ||
Methanobacterium thermoalcaliphilum | 58~62 | ||
甲烷 火菌目 | 杆状 | Methanopyrus kandleri | 98 |
分类 | 形态学 | 属名 | 最适温度/℃ |
---|---|---|---|
甲烷 微菌目 | 短杆、不规则球状 | Methanoculleus hydrogenitrophicus | 37 |
Methanoregula boonei | 35~37 | ||
Methanolacinia paynteri | 40 | ||
Methanocella conradii | 50~55 | ||
甲烷 球菌目 | 不规则 球状 | Methanococcus maripaludis | 85 |
Methanocaldococcus vulcanius | 80 | ||
Methanocaldococcus villosus | 80 | ||
Methanocaldococcus jannaschii | 85 | ||
Methanocaldococcus infernus | 85 | ||
Methanocaldococcus indicus | 85 | ||
Methanocaldococcus fervens | 85 | ||
甲烷 杆菌目 | 杆状为主 | Methanobacterium movens | 35~38 |
Methanobacterium bryantii | 37 | ||
Methanothermobacter tenebrarum | 70 | ||
Methanothermobacter marburgensis | 65 | ||
Methanothermobacter thermautotrophicus | 65~70 | ||
Methanothermobacter wolfeii | 55~65 | ||
Methanobrevibacter wolinii | 37 | ||
Methanobrevibacter thaueri | 37 | ||
Methanobrevibacter oralis | 35~37 | ||
Methanobrevibacter gottschalkii | 37 | ||
Methanobrevibacter filiformis | 30 | ||
Methanobrevibacter curvatus | 30 | ||
Methanobrevibacter arboriphilus | 30~37 | ||
Methanobrevibacter acididurans | 35 | ||
Methanobacterium petrolearium | 35 | ||
Methanobacterium ferruginis | 40 | ||
Methanobacterium espanolae | 35 | ||
Methanobacterium congolense | 37~42 | ||
Methanobacterium aarhusense | 45 | ||
Methanobacterium thermoalcaliphilum | 58~62 | ||
甲烷 火菌目 | 杆状 | Methanopyrus kandleri | 98 |
工艺 | 能源资源 | 原料 |
---|---|---|
生物质热解 | 内部产生的蒸汽 | 木本生物质 |
生物质气化 | 内部产生的蒸汽 | 木本生物质 |
直接生物光解 | 太阳能 | 水+藻类 |
间接生物光解 | 太阳能 | 水+藻类 |
暗发酵 | — | 有机生物质 |
光发酵 | 太阳能 | 有机生物质 |
太阳能光伏电解 | 太阳能 | 水 |
太阳热电解 | 太阳能 | 水 |
风电解 | 风能 | 水 |
核电解 | 核能 | 水 |
核热分解 | 核能 | 水 |
太阳能热解 | 太阳能 | 水 |
光电解 | 太阳能 | 水 |
工艺 | 能源资源 | 原料 |
---|---|---|
生物质热解 | 内部产生的蒸汽 | 木本生物质 |
生物质气化 | 内部产生的蒸汽 | 木本生物质 |
直接生物光解 | 太阳能 | 水+藻类 |
间接生物光解 | 太阳能 | 水+藻类 |
暗发酵 | — | 有机生物质 |
光发酵 | 太阳能 | 有机生物质 |
太阳能光伏电解 | 太阳能 | 水 |
太阳热电解 | 太阳能 | 水 |
风电解 | 风能 | 水 |
核电解 | 核能 | 水 |
核热分解 | 核能 | 水 |
太阳能热解 | 太阳能 | 水 |
光电解 | 太阳能 | 水 |
温度 | 反应器形式 | pH | 最大甲烷产量 /L·Lr-1·d-1 | 氢气利用率/% | 参考文献 | |
---|---|---|---|---|---|---|
低温 | 15℃ | EGSB | 7 | 2.6① | nd | [ |
中温 | 35℃ | CSTR | 8.20① | 0.17 | 92.70 | [ |
37℃ | BTF | 6.80-7.00 | 1.6 | 99 | [ | |
35℃ | FB | nd | 1.79±0.20 | nd | [ | |
37℃ | IBBR | nd | 1.10~2 | 93 | [ | |
30℃ | MB | 7.00~7.50 | nd | 98.10 | [ | |
37℃ | MB | 6.50~7.50 | 0.77 | nd | [ | |
高温 | 52℃ | CSTR | 8.30① | nd | 60① | [ |
55℃ | CSTR | 8.10① | 2.9 | 49① | [ | |
55℃ | CSTR | 8.50① | 0.36 | 92.10 | [ | |
55℃ | CSTR | nd | 5.30±1.40 | nd | [ | |
55℃ | CSTR+Upflow | 6.70 | 0.55 | nd | [ | |
52℃ | BCR | 8.30~8.80 | nd | 100 | [ | |
54℃ | BTF | 8.12~8.63 | 1.74±0.01 | 91.20~99.90 | [ | |
62℃ | CSTR | 7.50~9.90 | 7.64 | nd | [ | |
超高温 | 70℃ | CSTR | 7.5 ± 0.1 | nd | nd | [ |
温度 | 反应器形式 | pH | 最大甲烷产量 /L·Lr-1·d-1 | 氢气利用率/% | 参考文献 | |
---|---|---|---|---|---|---|
低温 | 15℃ | EGSB | 7 | 2.6① | nd | [ |
中温 | 35℃ | CSTR | 8.20① | 0.17 | 92.70 | [ |
37℃ | BTF | 6.80-7.00 | 1.6 | 99 | [ | |
35℃ | FB | nd | 1.79±0.20 | nd | [ | |
37℃ | IBBR | nd | 1.10~2 | 93 | [ | |
30℃ | MB | 7.00~7.50 | nd | 98.10 | [ | |
37℃ | MB | 6.50~7.50 | 0.77 | nd | [ | |
高温 | 52℃ | CSTR | 8.30① | nd | 60① | [ |
55℃ | CSTR | 8.10① | 2.9 | 49① | [ | |
55℃ | CSTR | 8.50① | 0.36 | 92.10 | [ | |
55℃ | CSTR | nd | 5.30±1.40 | nd | [ | |
55℃ | CSTR+Upflow | 6.70 | 0.55 | nd | [ | |
52℃ | BCR | 8.30~8.80 | nd | 100 | [ | |
54℃ | BTF | 8.12~8.63 | 1.74±0.01 | 91.20~99.90 | [ | |
62℃ | CSTR | 7.50~9.90 | 7.64 | nd | [ | |
超高温 | 70℃ | CSTR | 7.5 ± 0.1 | nd | nd | [ |
温度变化方式 | 温度变化范围 | 厌氧产甲烷情况 | 反应器形式 | 发表时间/年 | 参考文献 |
---|---|---|---|---|---|
升温 | 55℃→65℃ | 厌氧耗氢产甲烷作用增强 | CSTR | 1994,2001 | [ |
升温 | 37℃→55℃ | 由厌氧耗乙酸产甲烷向耗氢产甲烷转变 | CSTR | 2015 | [ |
升温 | 55℃→70℃ | 超高温时厌氧耗氢产甲烷古菌群落更单一 | CSTR | 2018 | [ |
升温 | 37℃→55℃ | 厌氧耗氢产甲烷逐渐成为主导 | CSTR | 2019 | [ |
降温 | 15℃→4℃ | 厌氧耗氢产甲烷逐渐成为主导 | — | 2009 | [ |
降温 | 37℃→17℃ | 厌氧耗氢产甲烷逐渐成为主导 | CSTR | 2014 | [ |
降温 | 37℃→15℃ | 厌氧耗氢产甲烷逐渐成为主导 | EGSB | 2015 | [ |
降温 | 37℃→25℃→15℃ | 厌氧耗氢产甲烷逐渐成为主导 | EGSB | 2012 | [ |
升、降温 | 10℃ | 厌氧耗氢产甲烷数量减少 | — | 1999 | [ |
升、降温 | 35℃ | 温度升高时耗氢产甲烷作用增强 | — | 2013 | [ |
温度变化方式 | 温度变化范围 | 厌氧产甲烷情况 | 反应器形式 | 发表时间/年 | 参考文献 |
---|---|---|---|---|---|
升温 | 55℃→65℃ | 厌氧耗氢产甲烷作用增强 | CSTR | 1994,2001 | [ |
升温 | 37℃→55℃ | 由厌氧耗乙酸产甲烷向耗氢产甲烷转变 | CSTR | 2015 | [ |
升温 | 55℃→70℃ | 超高温时厌氧耗氢产甲烷古菌群落更单一 | CSTR | 2018 | [ |
升温 | 37℃→55℃ | 厌氧耗氢产甲烷逐渐成为主导 | CSTR | 2019 | [ |
降温 | 15℃→4℃ | 厌氧耗氢产甲烷逐渐成为主导 | — | 2009 | [ |
降温 | 37℃→17℃ | 厌氧耗氢产甲烷逐渐成为主导 | CSTR | 2014 | [ |
降温 | 37℃→15℃ | 厌氧耗氢产甲烷逐渐成为主导 | EGSB | 2015 | [ |
降温 | 37℃→25℃→15℃ | 厌氧耗氢产甲烷逐渐成为主导 | EGSB | 2012 | [ |
升、降温 | 10℃ | 厌氧耗氢产甲烷数量减少 | — | 1999 | [ |
升、降温 | 35℃ | 温度升高时耗氢产甲烷作用增强 | — | 2013 | [ |
1 | HÖÖK M, TANG X. Depletion of fossil fuels and anthropogenic climate change—a review[J]. Energy Policy, 2013, 52: 797-809. |
2 | RAGAUSKAS A J, WILLIAMS C K, DAVISON B H, et al. The path forward for biofuels and biomaterials[J]. Science, 2006, 311: 484-489. |
3 | MARTIN M R, FORNERO J J, STARK R, et al. A single-culture bioprocess of methanothermobacter thermautotrophicus to upgrade digester biogas by CO2 -to-CH4 conversion with H2[J]. Archaea, 2013, 2013: 1-11. |
4 | BASSANI I, KOUGIAS P G, TREU L, et al. Optimization of hydrogen dispersion in thermophilic up-flow reactors for ex situ biogas upgrading[J]. Bioresour Technol, 2017, 234: 310-319. |
5 | HU Y, HAO X, ZHAO D, et al. Enhancing the CH4 yield of anaerobic digestion via endogenous CO2 fixation by exogenous H2[J]. Chemosphere, 2015, 140: 34-39. |
6 | STEVEN D A, MARTINY J B H. Resistance, resilience, and redundancy in microbial communities[J]. PANS, 2008, 105: 11512-11519. |
7 | SAKAI S, IMACHI H, HANADA S, et al. Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage ‘Rice Cluster I’, and proposal of the new archaeal order Methanocellales ord. nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(Pt 4): 929-936. |
8 | PAUL K, NONOH J O, MIKULSKI L, et al. “Methanoplasmatales,” thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens[J]. Applied and Environmental Microbiology, 2012, 78(23): 8245-8253. |
9 | GARCIA J L, OLLIVIER B, WHITMAN W B. The order methanomicrobiales[M]. New York: Springer, 2006: 231-243. |
10 | ZABRANSKA J, POKORNA D. Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens[J]. Biotechnol. Advance, 2018, 36(3): 707-20. |
11 | BONIN A S, BOONE D R. The order methanobacteriales[M]. New York: Springer, 2006: 231-243. |
12 | WHITMAN W B, JEANTHON C. Methanococcales[M]. New York: Springer, 2006: 257-273. |
13 | KURR M, HUBER R, KONIG H, et al. Methanopyrus-kandleri, gen and sp-nov represents a novel group of hyperthermophilic methanogens, growing at 110℃[J]. Archives of Microbiology, 1991, 156(4): 239-247. |
14 | SLESAREV A I, MEZHEVAYA K V, MAKAROVA K S, et al. The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(7): 4644-4649. |
15 | LUO G, JOHANSSON S, BOE K, et al. Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor[J]. Biotechnol. Bioeng., 2012, 109(4): 1088-1094. |
16 | BALAT M. Potential importance of hydrogen as a future solution to environmental and transportation problems[J]. International Journal of Hydrogen Energy, 2008, 33(15): 4013-4029. |
17 | BAGI Z, ACS N, BALINT B, et al. Biotechnological intensification of biogas production[J]. Applied Microbiology and Biotechnology, 2007, 76(2): 473-482. |
18 | NIKOLAIDIS P, POULLIKKAS A. A comparative overview of hydrogen production processes[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 597-611. |
19 | BALAT H, KRTAY E. Hydrogen from biomass-present scenario and future prospects[J]. International Journal of Hydrogen Energy, 2010, 35(14): 7416-7426. |
20 | PARTHASARATHY P, NARAYANAN K S. Hydrogen production from steam gasification of biomass: influence of process parameters on hydrogen yield-a review[J]. Renewable Energy, 2014, 66: 570-579. |
21 | DEMIRBASß A. Biomass resource facilities and biomass conversion processing for fuels and chemicals[J]. Energy Conversion and Management, 2001, 42: 1357-78. |
22 | MCKENDRY P. Energy production from biomass (part 1): overview of biomass[J]. Bioresource Technology, 2002, 83: 37-46. |
23 | ZHANG Y, YING Z, ZHOU J, et al. Electrolysis of the bunsen reaction and properties of the membrane in the sulfuriodine thermochemical cycle[J]. Industrial & Engineering Chemistry Research, 2014, 53(35): 13581-13588. |
24 | ROSSMEISL J, LOGADOTTIR A, NØRSKOV J K. Electrolysis of water on (oxidized) metal surfaces[J]. Chemical Physics, 2005, 319(1/2/3): 178-184. |
25 | BLOK K. Enhanced policies for the improvement of electricity efficiencies[J]. Energy Policy, 2005, 33(13): 1635-1641. |
26 | ĆOSIĆ B, KRAJAČIĆ G, DUIĆ N. A 100% renewable energy system in the year 2050: the case of macedonia[J]. Energy, 2012, 48(1): 80-87. |
27 | 郗凌霄, 姚立国. 氢气的来源及应用[J]. 精细与专用化学品, 2017, 25(10): 42-45. |
CHI L X, YAO L G. The sources and application of hydrogen[J]. Fine and Specialty Chemical, 2017, 25(10): 42-45. | |
28 | WANG W, XIE L, LUO G, et al. Performance and microbial community analysis of the anaerobic reactor with coke oven gas biomethanation and in situ biogas upgrading [J]. Bioresource Technology, 2013, 146: 234-239. |
29 | CONNAUGHTON S, COLLINS G, O’FLAHERTY V. Psychrophilic and mesophilic anaerobic digestion of brewery effluent: a comparative study[J]. Water Research, 2006, 40(13): 2503-2510. |
30 | GUNNIGLE E, NIELSEN J L, FUSZARD M, et al. Functional responses and adaptation of mesophilic microbial communities to psychrophilic anaerobic digestion[J]. FEMS Microbiol. Ecol., 2015, 91(12): 1-15 |
31 | O’REILLY J, LEE C, COLLINS G, et al. Quantitative and qualitative analysis of methanogenic communities in mesophilically and psychrophilically cultivated anaerobic granular biofilims[J]. Water Research, 2009, 43(14): 3365-3374. |
32 | JU F, ZHANG T. Novel microbial populations in ambient and mesophilic biogas-producing and phenol-degrading consortia unraveled by high-throughput sequencing[J]. Microbial Ecology, 2014, 68(2): 235-246. |
33 | BASSANI I, KOUGIAS P G, TREU L, et al. Biogas upgrading via hydrogenotrophic methanogenesis in two-stage continuous stirred tank reactors at mesophilic and thermophilic conditions[J]. Environmental Science & Technology, 2015, 49(20): 12585-12593. |
34 | LEE J C, KIM J H, CHANG W S, et al. Biological conversion of CO2 to CH4 using hydrogenotrophic methanogen in a fixed bed reactor[J]. Journal of Chemical Technology & Biotechnology, 2012, 87(6): 844-847. |
35 | BARANSI-KARKABY K, HASSANIN M, MUHSEIN S, et al. Innovative ex-situ biological biogas upgrading using immobilized biomethanation bioreactor (IBBR)[J]. Water Science and Technology, 2020, 81(6): 1319-1328. |
36 | ZHAO L, WANG Z, REN H Y, et al. Improving biogas upgrading and liquid chemicals production simultaneously by a membrane biofilm reactor[J]. Bioresource Technology, 2020, 313: 123693. |
37 | LUO G, ANGELIDAKI I. Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture[J]. Biotechnol. Bioeng., 2012, 109(11): 2729-2736. |
38 | CORBELLINI V, KOUGIAS P G, TREU L, et al. Hybrid biogas upgrading in a two-stage thermophilic reactor[J]. Energy Conversion and Management, 2018, 168: 1-10. |
39 | PORTÉ H, KOUGIAS P G, ALFARO N, et al. Process performance and microbial community structure in thermophilic trickling biofilter reactors for biogas upgrading[J]. Science of the Total Environment, 2019, 655: 529-538. |
40 | DONG N, BU F, ZHOU Q, et al. Performance and microbial community of hydrogenotrophic methanogenesis under thermophilic and extreme-thermophilic conditions[J]. Bioresource Technology, 2018, 266: 454-462. |
41 | RACHBAUER L, VOITL G, BOCHMANN G, et al. Biological biogas upgrading capacity of a hydrogenotrophic community in a trickle-bed reactor[J]. Applied Energy, 2016, 180: 483-490. |
42 | JU D H, SHIN J H, LEE H K, et al. Effects of pH conditions on the biological conversion of carbon dioxide to methane in a hollow-fiber membrane biofilm reactor (Hf-MBfR)[J]. Desalination, 2008, 234(1/2/3): 409-415. |
43 | KOUGIAS P G, TREU L, BENAVENTE D P, et al. Ex-situ biogas upgrading and enhancement in different reactor systems[J]. Bioresource Technology, 2017, 225: 429-437. |
44 | VOELKLEIN M A, RUSMANIS D, MURPHY J D. Biological methanation: strategies for in-situ and ex-situ upgrading in anaerobic digestion[J]. Applied Energy, 2019, 235: 1061-1071. |
45 | STREVETT K A, VIETH R F, GRASSO D. Chemo-autotrophic biogas purification for methane enrichment[J]. Chemical Engineering Journal & the Biochemical Engineering Journal, 1995, 58(1): 71-79. |
46 | AHRING B K. Status on science and application of thermophilic anaerobic digestion[J]. Water Science and Technology, 1994, 30(12): 241-249. |
47 | AHRING B K, IBRAHIM A A, MLADENOVSKA Z. Effect of temperature increase from 55℃ to 65℃ on performance and microbial population dynamics of an anaerobic reactor treating cattle manure[J]. Water Research, 2001, 35(10): 2446-2452. |
48 | PAP B, GYORKEI A, BOBOESCU I Z, et al. Temperature-dependent transformation of biogas-producing microbial communities points to the increased importance of hydrogenotrophic methanogenesis under thermophilic operation[J]. Bioresource Technology, 2015, 177: 375-380. |
49 | KOHRS F, HEYER R, MAGNUSSEN A, et al. Sample prefractionation with liquid isoelectric focusing enables in depth microbial metaproteome analysis of mesophilic and thermophilic biogas plants[J]. Anaerobe, 2014, 29: 59-67. |
50 | LYU Z, WU X, ZHOU B, et al. Effect of one step temperature increment from mesophilic to thermophilic anaerobic digestion on the linked pattern between bacterial and methanogenic communities[J]. Bioresource Technology, 2019, 292: 121968. |
51 | MCKEOWN R M, SCULLY C, ENRIGHT A M, et al. Psychrophilic methanogenic community development during long-term cultivation of anaerobic granular biofilms[J]. ISME Journal, 2009, 3(11): 1231-1242. |
52 | REGUEIRO L, CARBALLA M, LEMA J M. Outlining microbial community dynamics during temperature drop and subsequent recovery period in anaerobic co-digestion systems[J]. Journal of Biotechnology, 2014, 192(Pt A): 179-186. |
53 | BIALEK K, KUMAR A, MAHONY T, et al. Microbial community structure and dynamics in anaerobic fluidized-bed and granular sludge-bed reactors: influence of operational temperature and reactor configuration[J]. Microbial Biotechnology, 2012, 5(6): 738-752. |
54 | SINGH L, ALAM S I, RAMANA K V. Effect of fluctuating temperature regime on psychrophilic anaerobic digestion of nightsoil[J]. Defence Science Journal, 1999, 49(2): 135-140. |
55 | CHO K, LEE J, KIM W, et al. Behavior of methanogens during start-up of farm-scale anaerobic digester treating swine wastewater[J]. Process Biochemistry, 2013, 48(9): 1441-1445. |
[1] | Lurui CHEN,Shiyun DU,Li XIE. Effect of pH on hydrogenotrophic methanogenesis and microbial community under thermophilic condition [J]. Chemical Industry and Engineering Progress, 2019, 38(08): 3816-3822. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |