Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (10): 5378-5387.DOI: 10.16085/j.issn.1000-6613.2021-0642
• Special column:Resource recycling and value-added utilization • Previous Articles Next Articles
TANG Liang1,2(), LIAO Qiang1,2(), XIA Ao1,2, HUANG Yun1,2, ZHU Xianqing1,2, ZHU Xun1,2
Received:
2021-03-30
Revised:
2021-04-29
Online:
2021-10-25
Published:
2021-10-10
Contact:
LIAO Qiang
唐亮1,2(), 廖强1,2(), 夏奡1,2, 黄云1,2, 朱贤青1,2, 朱恂1,2
通讯作者:
廖强
作者简介:
唐亮(1995—),男,硕士研究生,研究方向为新能源技术系统。E-mail:基金资助:
CLC Number:
TANG Liang, LIAO Qiang, XIA Ao, HUANG Yun, ZHU Xianqing, ZHU Xun. Mechanism and characteristics of nature inspired enzyme-fungi synergistic system for lignin pretreatment[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5378-5387.
唐亮, 廖强, 夏奡, 黄云, 朱贤青, 朱恂. 仿生酶菌协同体系预处理木质素机理及特性[J]. 化工进展, 2021, 40(10): 5378-5387.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0642
波数/cm-1 | 标记 |
---|---|
3222 | O—H键拉伸振动 |
2935 | CH2,CH3和CH3O基团的C—H拉伸振动 |
1213 | 苯酚的C—O拉伸振动 |
1125 | 紫丁香基木素C—H面内变形 |
1081 | 醇类C—O拉伸振动 |
波数/cm-1 | 标记 |
---|---|
3222 | O—H键拉伸振动 |
2935 | CH2,CH3和CH3O基团的C—H拉伸振动 |
1213 | 苯酚的C—O拉伸振动 |
1125 | 紫丁香基木素C—H面内变形 |
1081 | 醇类C—O拉伸振动 |
样品 | 平均孔径/nm | 总孔容/mL?g-1 |
---|---|---|
未经处理 | 841.41 | 1.80 |
La处理 | 1250.72 | 1.76 |
PC处理 | 1000.64 | 1.44 |
La+PC处理 | 1796.31 | 1.45 |
Te处理 | 1125.92 | 1.44 |
La+Te处理 | 1639.46 | 1.67 |
样品 | 平均孔径/nm | 总孔容/mL?g-1 |
---|---|---|
未经处理 | 841.41 | 1.80 |
La处理 | 1250.72 | 1.76 |
PC处理 | 1000.64 | 1.44 |
La+PC处理 | 1796.31 | 1.45 |
Te处理 | 1125.92 | 1.44 |
La+Te处理 | 1639.46 | 1.67 |
信号 | δC/δH | 标记 |
---|---|---|
Bβ | 54.15/3.07 | 树脂醇β—β键的Cβ—Hβ |
-OMe | 56.15/3.77 | 甲氧基的C—H |
Aγ | 60.71/3.43 | β-O-4'亚结构的Cγ—Hγ |
Bγ | 71.57/3.76~4.16 | 树脂醇β-β键的Cγ—Hγ |
Aα | 71.64/4.78 | β-O-4'亚结构的Cα—Hα |
Aβ | 84.81/4.29 | 与紫丁香基木素相连的β-O-4'亚结构的Cβ—Hβ |
Bα | 85.60/4.63 | 树脂醇β-β键的Cα—Hα |
Cα | 87.49/5.49 | 苯基香豆满亚结构β-5键的Cα—Hα |
G2 | 111.05/6.91 | 愈创木基木素的C2—H2 |
G5 | 115.78/6.68 | 愈创木基木素的C5—H5 |
G6 | 119.32/6.76 | 愈创木基木素的C6—H6 |
H2,6 | 126.55/7.42 | 对羟基苯基木素的C2,6—H2,6 |
信号 | δC/δH | 标记 |
---|---|---|
Bβ | 54.15/3.07 | 树脂醇β—β键的Cβ—Hβ |
-OMe | 56.15/3.77 | 甲氧基的C—H |
Aγ | 60.71/3.43 | β-O-4'亚结构的Cγ—Hγ |
Bγ | 71.57/3.76~4.16 | 树脂醇β-β键的Cγ—Hγ |
Aα | 71.64/4.78 | β-O-4'亚结构的Cα—Hα |
Aβ | 84.81/4.29 | 与紫丁香基木素相连的β-O-4'亚结构的Cβ—Hβ |
Bα | 85.60/4.63 | 树脂醇β-β键的Cα—Hα |
Cα | 87.49/5.49 | 苯基香豆满亚结构β-5键的Cα—Hα |
G2 | 111.05/6.91 | 愈创木基木素的C2—H2 |
G5 | 115.78/6.68 | 愈创木基木素的C5—H5 |
G6 | 119.32/6.76 | 愈创木基木素的C6—H6 |
H2,6 | 126.55/7.42 | 对羟基苯基木素的C2,6—H2,6 |
样品 | Emax/mg?g-1 | R2 |
---|---|---|
未处理 | 20.48 | 0.97 |
La | 17.22 | 0.93 |
PC | 12.78 | 0.79 |
La+PC | 11.49 | 0.74 |
Te | 10.68 | 0.91 |
La+Te | 9.94 | 0.87 |
样品 | Emax/mg?g-1 | R2 |
---|---|---|
未处理 | 20.48 | 0.97 |
La | 17.22 | 0.93 |
PC | 12.78 | 0.79 |
La+PC | 11.49 | 0.74 |
Te | 10.68 | 0.91 |
La+Te | 9.94 | 0.87 |
1 | 新华每日电讯. 习近平在第七十五届联合国大会一般性辩论上发表重要讲话[EB/OL]. [2021-03-15]. . |
XINHUA DAILY TELEGRAPH. XI Jinping delivers an important speech at the general debate of the 75th UN General Assembly[EB/OL]. [2021-03-15]. . | |
2 | CHEN W, WU F W, ZHANG J H. Potential production of non-food biofuels in China[J]. Renewable Energy, 2016, 85: 939-944. |
3 | 国家统计局. 中华人民共和国2020年国民经济和社会发展统计公报[R]. 北京: 国家统计局, 2021. |
National Bureau of Statistics. 2020 National Economic and Social Development Statistical Bulletin of the People’s Republic of China[R]. Beijing: National Bureau of Statistics, 2021. | |
4 | LI J B, FENG P, XIU H J, et al. Morphological changes of lignin during separation of wheat straw components by the hydrothermal-ethanol method[J]. Bioresource Technology, 2019, 294: 122157. |
5 | CHEN H Y, LIU J B, CHANG X, et al. A review on the pretreatment of lignocellulose for high-value chemicals[J]. Fuel Processing Technology, 2017, 160: 196-206. |
6 | SHARMA H K, XU C B, QIN W S. Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview[J]. Waste and Biomass Valorization, 2019, 10(2): 235-251. |
7 | LYND L R, WEIMER P J, VAN ZYL W H, et al. Microbial cellulose utilization: fundamentals and biotechnology[J]. Microbiology and Molecular Biology Reviews, 2002, 66(3): 506-577. |
8 | XU H F, LI B, MU X D. Review of alkali-based pretreatment to enhance enzymatic saccharification for lignocellulosic biomass conversion[J]. Industrial & Engineering Chemistry Research, 2016, 55(32): 8691-8705. |
9 | CHEN W H, TU Y J, SHEEN H K. Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating[J]. Applied Energy, 2011, 88(8): 2726-2734. |
10 | MA F Y, YANG N, XU C Y, et al. Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth[J]. Bioresource Technology, 2010, 101(24): 9600-9604. |
11 | CADOCHE L, LÓPEZ G D. Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes[J]. Biological Wastes, 1989, 30(2): 153-157. |
12 | BEHERA S, ARORA R, NANDHAGOPAL N, et al. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass[J]. Renewable and Sustainable Energy Reviews, 2014, 36: 91-106. |
13 | WARNECKE F, LUGINBÜHL P, IVANOVA N, et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite[J]. Nature, 2007, 450(7169): 560-565. |
14 | AANEN D K, EGGLETON P, ROULAND-LEFEVRE C, et al. The evolution of fungus-growing termites and their mutualistic fungal symbionts[J]. PNAS, 2002, 99(23): 14887-14892. |
15 | OHKUMA M. Termite symbiotic systems: efficient bio-recycling of lignocellulose[J]. Applied Microbiology and Biotechnology, 2003, 61(1): 1-9. |
16 | LI H J, YELLE D J, LI C, et al. Lignocellulose pretreatment in a fungus-cultivating termite[J]. PNAS, 2017, 114(18): 4709-4714. |
17 | RENCORET J, PEREIRA A, RÍO J C DEL, et al. Delignification and saccharification enhancement of sugarcane byproducts by a laccase-based pretreatment[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7145-7154. |
18 | ZHAO M H, ZHANG C S, ZENG G M, et al. Growth, metabolism of Phanerochaete chrysosporium and route of lignin degradation in response to cadmium stress in solid-state fermentation[J]. Chemosphere, 2015, 138: 560-567. |
19 | EGGERT C, TEMP U, DEAN J F D, et al. Laccase-mediated formation of the phenoxazinone derivative, cinnabarinic acid[J]. FEBS Letters, 1995, 376(3): 202-206. |
20 | 张庆芳, 于宗莲. 一株高效木质素降解细菌的筛选及产酶条件的优化[J]. 中国农业科技导报, 2014, 16(2): 143-148. |
ZHANG Qingfang, YU Zonglian. A strain of lignin-degrading bacteria's screening and optimization of enzyme-producing condition[J]. Journal of Agricultural Science and Technology, 2014, 16(2): 143-148. | |
21 | LEE D S, LEE Y G, SONG Y, et al. Hydrolysis patterns of xylem tissues of hardwood pretreated with acetic acid and hydrogen peroxide[J]. Frontiers in Energy Research, 2020, 8: 34. |
22 | FILLAT Ú, IBARRA D, EUGENIO M, et al. Laccases as a potential tool for the efficient conversion of lignocellulosic biomass: a review[J]. Fermentation, 2017, 3(2): 17. |
23 | LU X Q, ZHENG X J, LI X Z, et al. Adsorption and mechanism of cellulase enzymes onto lignin isolated from corn stover pretreated with liquid hot water[J]. Biotechnology for Biofuels, 2016, 9(1): 1-12. |
24 | DENG Z C, XIA A, LIAO Q, et al. Laccase pretreatment of wheat straw: effects of the physicochemical characteristics and the kinetics of enzymatic hydrolysis[J]. Biotechnology for Biofuels, 2019, 12(1): 1-12. |
25 | SUN S L, HUANG Y, SUN R C, et al. The strong association of condensed phenolic moieties in isolated lignins with their inhibition of enzymatic hydrolysis[J]. Green Chemistry, 2016, 18(15): 4276-4286. |
26 | 李鸿杰. 黑翅土白蚁及其微生物协同降解木质纤维素机制研究[D]. 杭州: 浙江大学, 2014. |
LI Hongjie. The mechanism of lignocellulose degradation in the mutualism system of odontotermes formosanus and assocaited microorganism[D]. Hangzhou: Zhejiang University, 2014. | |
27 | 陈跃辉. 三国吴简腐蚀斑微生物的分离鉴定及其木质素降解性能研究[D]. 长沙: 中南大学, 2009. |
CHEN Yuehui. Study on the isolation and identification of corroded spot microorganisms and their lignin degradability[D]. Changsha: Central South University, 2009. | |
28 | 李玉英, 杨震宇. 漆酶的特性和应用研究进展[J]. 江西科学, 2009, 27(5): 680-684. |
LI Yuying, YANG Zhenyu. Research progress nature and application of laccase[J]. Jiangxi Science, 2009, 27(5): 680-684. | |
29 | 苏鑫. 常温细菌复合菌系降解木质素的协同作用解析[D]. 大庆: 黑龙江八一农垦大学, 2020. |
SU Xin. Bacterial synergy analysis of lignin degradation consortium at 30℃[D]. Daqing: Heilongjiang Bayi Agricultural University, 2020 | |
30 | WANG L, ZHANG R, LI J, et al. Comparative study of the fast pyrolysis behavior of ginkgo, poplar, and wheat straw lignin at different temperatures[J]. Industrial Crops and Products, 2018, 122: 465-472. |
31 | SUN C H, XIA A, LIAO Q, et al. Improving production of volatile fatty acids and hydrogen from microalgae and rice residue: Effects of physicochemical characteristics and mix ratios[J]. Applied Energy, 2018, 230: 1082-1092. |
32 | YANG H P, YAN R, CHEN H P, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12/13): 1781-1788. |
33 | YAO L, YANG H T, YOO C G, et al. A mechanistic study of cellulase adsorption onto lignin[J]. Green Chemistry, 2021, 23(1): 333-339. |
[1] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[2] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[3] | LI You, WU Yue, ZHONG Yu, LIN Qixuan, REN Junli. Pretreatment of wheat straw with acidic molten salt hydrate for xylose production and its effect on enzymatic hydrolysis efficiency [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4974-4983. |
[4] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[5] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
[6] | CHEN Na, ZHANG Xiaojing, ZHANG Nan, MA Bingbing, ZHANG Han, YANG Haojie, ZHANG Hongzhong. Effect of quenching enzymes on partial nitrification-mixed autotrophic nitrogen removal system [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3816-3823. |
[7] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[8] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[9] | REN Jianpeng, WU Caiwen, LIU Huijun, WU Wenjuan. Preparation of lignin-polyaniline composites and adsorption of Congo red [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3087-3096. |
[10] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[11] | ZHANG Yaodan, SUN Ruoxi, CHEN Pengcheng. Advances of multi-enzyme co-immobilization carrier based on cascade reactions [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3167-3176. |
[12] | QIN Kai, YANG Shilin, LI Jun, CHU Zhenyu, BO Cuimei. A Kalman filter algorithm-based high precision detection method for glucoamylase biosensors [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3177-3186. |
[13] | WU Fengzhen, LIU Zhiwei, XIE Wenjie, YOU Yating, LAI Rouqiong, CHEN Yandan, LIN Guanfeng, LU Beili. Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3292-3301. |
[14] | YANG Hongmei, GAO Tao, YU Tao, QU Chengtun, GAO Jiapeng. Treatment of refractory organics sulfonated phenolic resin with ferrate [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3302-3308. |
[15] | MAO Menglei, MENG Lingding, GAO Rui, MENG Zihui, LIU Wenfang. Research progress on enzyme immobilization on porous framework materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2516-2535. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |