1 | 北极星太阳能光伏网. 2019年全球光热发电建成装机增至6451MW,中国贡献52.41%新增容量[OL]. (2020-01-08)[2020-05-06]. . | 2 | 中国电力企业联合会. 电力发展“十三五”规划(2016—2020年)[OL]. (2016-12-26)[2020-05-06]. . | 3 | 国家能源局. 2019年上半年风电并网运行情况[OL]. (2019-07-26)[2020-05-06]. . | 3 | National Energy Administration. Wind power grid-connected market in the first half of 2019[OL]. (2016-12-26)[2020-05-06]. . | 4 | 朱芳啟, 江龙, 王丽伟, 等. MnCl2-CaCl2-NH3再吸附温度提升系统储能特性[J]. 化工学报, 2016, 67(4): 1453-1458. | 4 | ZHU Fangqi, JIANG Long, WANG Liwei, et al. Energy storage properties of MnCl2-CaCl2-NH3 resorption temperature-lifting system[J]. CIESC Journal, 2016, 67(4): 1453-1458. | 5 | 赵璇, 赵彦杰, 王景刚, 等. 太阳能跨季节储热技术研究进展[J]. 新能源进展, 2017(5): 73-80. | 5 | ZHAO Xuan, ZHAO Yanjie, WANG Jinggang, et al. Research progress on solar seasonal thermal energy storage[J]. Advances in New and Renewable Energy, 2017(5): 73-80. | 6 | 陈枭, 张仁元, 毛凌波, 等. 石蜡类相变材料的研究及应用进展[J]. 材料研究及与应用, 2008, 2(2): 89-92. | 6 | CHEN Xiao, ZHANG Renyuan, MAO Lingbo, et al. Progress in research and application of paraffin wax phase change material[J]. Materials Research and Application, 2008, 2(2): 89-92. | 7 | SHANG B, HU J, HU R,et al. Modularized thermal storage unit of metal foam/paraffin composite[J]. International Journal of Heat and Mass Transfer, 2018, 125: 596-603. | 8 | LUO D, WEI F, SHAO H,et al. Shape stabilization, thermal energy storage behavior and thermal conductivity enhancement of flexible paraffin/MWCNTs/PP hollow fiber membrane composite phase change materials[J]. Journal of Materials Science, 2018, 53(22): 15500-15513. | 9 | 叶锋, 曲江兰, 仲俊瑜, 等. 相变储热材料研究进展[J]. 过程工程学报, 2010, 10(6): 1231-1241. | 9 | YE Feng, QU Jianglan, ZHONG Junyu, et al. Research advances in phase change materials for thermal energy storage[J]. The Chinese Journal of Process Engineering, 2010, 10(6): 1231-1241. | 10 | GHONEIM A A. Comparison of theoretical models of phase-change and sensible heat storage for air and water-based solar heating systems[J]. Solar Energy, 1989, 42(3): 209-220. | 11 | ADBEL K, MORRISON D J. Effects of phase-change energy storage on the performance of air-based and liquid-based solar heating systems[J]. Solar Energy, 1978, 20(1): 57-67. | 12 | NAZIR H, BATOOL M, ALI M, et al. Fatty acids based eutectic phase change system for thermal energy storage applications[J]. Applied Thermal Engineering, 2018, 142:466-475. | 13 | RAVOTTI R, FELLMANN O, LARDON N, et al. Synthesis and investigation of thermal properties of highly pure carboxylic fatty esters to be used as PCM[J]. Applied Sciences, 2018, 8:1069. | 14 | 方晓明, 张正国. 硬酯酸/膨润土复合相变储热材料研究[J] .非金属矿, 2005, 28(4): 23-27. | 14 | FANG Xiaoming, ZHANG Zhengguo. Study on stearic acid/ bentonite composite phase change material for thermal storage[J]. Non-Metallic Mines, 2005, 28(4): 23-27. | 15 | 刘弋潞, 王春燕, 宿旭昊, 等. 硬脂酸/钠基有机膨润土相变储能石膏板的性能研究[J]. 化工新型材料, 2015, 43(6): 222-227. | 15 | LIU Yilu, WANG Chunyan, SU xuhao, et al. Performance study of the phase change stearic acid/sodium based organic bentonite gypsum board for energy storage[J]. New Chemical Materials, 2015, 43(6): 222-227. | 16 | THAKARE K A, VISHWAKARMA H G, BHAVE A G, et al. Experimental incestigation of possible use of HDPE as thermal storage material in thermal storage type solar cookers[J]. International Journal of Research in Engineering and Technology, 2015, 4(12): 92-99. | 17 | WAGNER M H, KHEIRANDISH S, YAMAGUCHI M. Quantitative analysis of melt elongational behavior of LLDPE/LDPE blends[J]. Rheologica Acta, 2004, 44: 198-218. | 18 | 郭力. 高密度聚乙烯支链结构、结晶行为和力学性能研究[D]. 大庆: 东北石油大学, 2017. | 18 | GUO Li. Study on branches structure, crystallization, behavior, and mechanical, properties of high density polyethylene[D]. Daqing: Northeast Petroleum University, 2017. | 19 | 黄晓梅, 宋波. HDPE/炭素材料导热复合材料研究进展[J]. 山东化工, 2019, 16: 65-66. | 19 | HUANG Xiaomei, SONG Bo. Research progress of HDPE/carbon material thermal conductive composites[J]. Shandong Chemical Industry, 2019, 16: 65-66. | 20 | 蔡伟, 孙志高, 马鸿凯, 等. 有机复合相变材料性能研究[J]. 化工新型材料, 2015, 43(8): 87-89. | 20 | CAI Wei,SUN Zhigao, MA Hongkai, et al. Research on property of organic composite phase change materials[J]. New Chemical Materials, 2015, 43(8): 87-89.9. | 21 | 王朋. 酯类相变蓄热保温温室墙体材料开发研究[D]. 西安: 西北农林科技大学, 2012. | 21 | WANG Peng. Developing thermal storage material incorporating composite esters phase change material in greenhouse walls[D]. Xi’an: Northwest A&F University, 2012. | 22 | 冷光辉, 曹惠, 彭浩, 等. 储热材料研究现状及发展趋势[J]. 储能科学与技术, 2017, 6(5): 1058-1075. | 22 | LENG Guanghui, CAO hui, PENG Hao, et al. The new research progress of thermal energy storage materials[J]. Energy Storage Science and Technology, 2017, 6(5): 1058-1075. | 23 | 王霞, 王利恩. 熔融盐储热技术在新能源行业中的应用进展[J]. 电气制造, 2013(10): 74-78. | 23 | WANG Xia, WANG Li’en. Research on the molten salt thermal storage materials used in new resources area[J]. Electrical Manufacturing, 2013(10): 74-78. | 24 | 闫全英, 孙相宇, 王丽娟, 等. 三元碳酸盐混合物的制备及热物性研究[J]. 化工新型材料, 2017, 45(9): 190-192. | 24 | YAN Quanying, SUN Xiangyu, WANG Lijuan, et al. Research on preparation and thermal property of high temperature carbonate molten salt[J]. New Chemical Materials, 2017, 45(9): 190-192. | 25 | 李爱菊. 无机盐/陶瓷基复合储能材料制备、性能及其熔化传热过程的研究[D]. 广州: 广东工业大学, 2005. | 25 | LI Aiju. Study on fabrication technology performances and melting heat transfer process of salt/ceramic composite energy storage material[D]. Guangzhou: Guangdong University of Technology, 2005. | 26 | 贺万玉. 混合氯化熔盐的热物性及腐蚀性实验研究[D]. 北京: 北京建筑大学, 2016. | 26 | HE Wanyu. Experimental study on thermal properties and corrosion resistance of mixed chlorinated molten salts[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2016. | 27 | LIU M, SAMAN W, BRUNO F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2118-2132. | 28 | SERRANO-LóPEZ R, FRADERA J, CUESTA-LóPEZ S. Molten salts database for energy applications[J]. Chemical Engineering and Processing: Process Intensification, 2013, 73: 87-102. | 29 | CHIERUZZI M, MILIOZZI A, CRESCENZI T, et al. Synthesis and characterization of nanofluids useful in concentrated solar power plants produced by new mixing methodologies for large-scale production[J]. Journal of Heat Transfer of the ASME, 2018, 140(4): 042401-1. | 30 | 张晗. 三元硝酸盐的改性研究[D]. 武汉: 武汉理工大学, 2014. | 30 | ZHANG Han. The modification research of ternary nitrates[D]. Wuhan: Wuhan University of Technology, 2014. | 31 | LU W, LIU G Z, XIONG Z B, et al. An experimental investigation of composite phase change materials of ternary nitrate and expanded graphite for medium-temperature thermal energy storage[J]. Solar Energy, 2020, 195: 573-580. | 32 | FERNáNDEZ A G, USHAK S, GALLEGUILLOS H, et al. Thermal characterization of an innovative quaternary molten nitrate mixture for energy storage in CSP plants[J]. Solar Energy Materials and Solar Cells, 2015, 132: 172-177. | 33 | BIRCHENALL C E, RIECHMAN A F. Heat storage in eutectic alloys [J]. Metallurgical and Materials Transactions A, 1980, 11(8): 1415-1420. | 34 | FARKAS D, BIRCHENALL C E. New eutectic alloys and their heats of transformation[J]. Metallurgical Transactions A, 1985, 16(3): 323-328. | 35 | 张国才, 徐哲, 陈运法, 等. 金属基相变材料的研究进展及应用[J]. 储能科学与技术, 2012, 1(1): 74-81. | 35 | ZHANG Guocai, XU Zhe, CHEN Yunfa, et al. Progress in metal-based phase change materials for thermal energy storage applications[J]. Energy Storage Science and Technology, 2012, 1(1): 74-81. | 36 | 陈正荣, 邢登清, 王守彪. 金属相变高温储存太阳能的研究[J]. 西藏科技, 1995(4): 10-12. | 36 | CHENG Zhengrong, XING Dengqing, WANG Shoubiao. The research on solar energy storage using metal phase change materials[J]. Tibet Science and Technology, 1995(4): 10-12. | 37 | 孙建强, 张仁元, 沈学忠, 等. Al-34%Mg-6%Zn 和 Al-28%Mg-14%Zn合金的热分析研究[J]. 广东工业大学学报, 2006, 23(3): 8-15. | 37 | SUN Jianqiang, ZHANG Renyuan, SHEN Xuezhong, et al. Thermal analytical investigations of Al-34%Mg-6%Zn and Al-28%Mg-14%Zn alloys[J]. Journal of Guangdong University of Technology, 2006, 23(3): 8-15. | 38 | 程晓敏, 官计生, 胡胜, 等. 铝合金高温储热材料及储热系统设计[J]. 中国材料科技与设备, 2008(2): 91-93. | 38 | CHENG Xiaomin, GUAN Jisheng, HU Sheng, et al. Design of high temperature thermal energy storage aluminum alloy and system[J]. Chinese Materials Science Technology & Equipment, 2008(2): 91-93. | 39 | 程晓敏, 董静, 吴兴文, 等. Al-Si-Cu-Mg-Zn 合金的高温相变储热性能研究[J]. 金属热处理, 2010, 35(3): 13-16. | 39 | CHENG Xiaomin, DONG Jing, WU Xingwen, et al. Thermal storage properties of high-temperature phase transformation on Al-Si-Cu-Mg-Zn alloys[J]. Heat Treatment of Metals, 2010, 35(3): 13-16. | 40 | 许骏, 于思荣. 铝基合金相变储热材料的研究现状与发展趋势[J]. 材料导报, 2013, 27(19): 93-97. | 40 | XU Jun, YU Sirong. Research and application progress of Al-based alloy phase change materials using for thermal storage[J]. Materials Review, 2013, 27(19): 93-97. | 41 | BLANCO-RODRíGUEZ P, RODRíGUEZ-ASEGUINOLAZA J, RISUE?O E,et al. Thermophysical characterization of Mg-51%Zn eutectic metal alloy: a phase change material for thermal energy storage in direct steam generation applications[J]. Energy, 2014, 72:414-420. | 42 | 孙正, 程晓敏, 朱教群, 等. Mg基高温相变储热共晶合金熔化相变焓的研究[J]. 功能材料, 2017, 48(2): 2236-2240. | 42 | SUN Zheng, CHENG Xiaomin, ZHU jiaoqun, et al. Latent heat of melting of Mg-based eutectic alloys as high temperature phase change materials for latent storage[J]. Journal of Functional Materials, 2017, 48(2): 2236-2240. | 43 | 冷光辉, 兰志鹏, 葛志伟, 等. 储热材料研究进展[J]. 储能科学与技术, 2015, 4(2): 119-130. | 43 | LENG Guanghui, LAN Zhipeng, GE Zhiwei, et al. Recent progress in thermal energy storage materials[J]. Energy Storage Science and Technology, 2015, 4(2): 119-130. | 44 | 隋艳伟, 李邦盛, 刘爱辉, 等. 立式离心铸造液态金属中气泡的长大规律[J]. 特种铸造及有色合金, 2009, 29(3): 210-212. | 44 | Yanwei SUI, LI Bangsheng, LIU Aihui, et al. Gas bubble growth in vertical centrifugal casting liquid metal[J]. Special-cast and Non-ferrous Alloys, 2009, 29(3): 210-212. | 45 | 孙建强, 张仁元. 金属相变储能与技术的研究与发展[J]. 材料导报, 2005, 19(8): 99-101. | 45 | SUN jianqiang, ZHANG Renyuan. Review of thermal energy storage with metal phase change materials[J]. Materials Review, 2005, 19(8): 99-101. | 46 | 顾晓华. 聚乙二醇类高分子型固固相变储能材料的研究[D]. 上海: 东华大学, 2008. | 46 | GU Xiaohua. Researches on PEG-macromolecule solid-solid phase changed energy storage materials[D]. Shanghai: Donghua University,2008. | 47 | 樊耀峰, 张兴祥. 有机固-固相变材料的研究进展[J]. 材料导报, 2003, 17(7): 50-53. | 47 | FAN Yaofeng, ZHANG Xingxiang. Progress in studies of solid-solid phase change materials[J]. Materials Review, 2003, 17(7): 50-53. | 48 | 钟秋, 张威, 赵春芳, 等. 固-固相变储热材料的研究进展[J]. 广州化工, 2016(23): 4-6. | 48 | ZHONG Qiu, ZHANG Wei, ZHAO Chunfang, et al. Research progress on polymer solid-solid phase transition materials for thermal energy storage[J]. Guangzhou Chemical Industry, 2016(23): 4-6. | 49 | 王毅, 夏天东, 冯辉霞. 有机相变储热材料的研究进展[J]. 材料导报, 2011, 25(2): 66-74. | 49 | WANG Yi, XIA Tiandong, FENG Huixia. Research and development of heat storage using organic phase change materials[J]. Materials Review, 2011, 25(2): 66-74. | 50 | 于少明, 蒋长龙, 杭国培, 等. 固固相变贮能材料研究现状与进展[J]. 化工新型材料, 2002(7): 19-21. | 50 | YU Shaoming, JIANG Changlong, HANG Guopei, et al. Current situation and progress in studies of solid-solid phase change materials for energy storage[J]. New Chemical Materials, 2002(7): 19-21. | 51 | FALLAHI A, GULDENTOPS G, TAO M, et al. Review on solid-solid phase change materials for thermal energy storage: molecular structure and thermal properties[J]. Applied Thermal Engineering, 2017, 127: 1427-1441. | 52 | 沈向阳,陆建峰,丁静,等.熔盐在螺旋槽管和横纹管内强化传热特性[J]. 工程热物理学报, 2013, 34(6): 1149-1152. | 52 | SHEN Xiangyang, LU Jianfeng, DING Jing, et al. Heat transfer enhancement characteristics of molten salt in the spiral groove tubes and striated tubes[J]. Journal of Engineering Thermophysics, 2013, 34(6): 1149-1152. | 53 | 郭茶秀, 魏新利. 热能存储技术与应用[M]. 北京: 化学工业出版社, 2005: 81-83. | 53 | GUO Chaxiu, WEI Xinli. Thermal energy storage technology and application[M]. Beijing: Chemical Industry Press, 2005: 81-83. | 54 | 康亚盟, 刁彦华, 赵耀华, 等. 纳米复合相变储热材料的制备与特性[J]. 化工学报, 2016, 67(S1): 372-378. | 54 | KANG Yameng, DIAO Yanhua, ZHAO Yaohua, et al. Preperation and properties of nano of composite phase change thermal storage materials[J]. CIESC Journal, 2016, 67(S1): 372-378. | 55 | ZALBA B, MARI?N J M, CABEZA L F, et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 3(3): 251-283. | 56 | 华建社, 张娇, 张焱, 等. 膨胀石墨/石蜡复合相变储热材料的热性能及定形性研究[J]. 材料导报, 2016, 30(12): 61-64. | 56 | HUA Jianshe, ZHANG Jiao, ZHANG Yan, et al. Study on thermal properties and shape-stabilizing of expanded graphite/paraffin composite phase change material[J]. Materials Review, 2016, 30(12): 61-64. | 57 | KENISARIN M M. High-temperature phase change materials for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2010, 14(3): 955-970. | 58 | CHOI S U S, EASTMAN J A. Enhancing thermal conductivity of fluids with nanoparticles[C]//1995 International Mechanical Engineering Congress and Exhibition. San Francisco, 1995. | 59 | 王鑫, 方建华, 吴江, 等. 相变材料封装定型技术研究进展[J]. 化工新型材料, 2019, 47(9): 58-61. | 59 | WANG Xing, FANG Jianhua, WU Jiang, et al. Development of packaging technology for phase change material[J]. New Chemical Materials, 2019, 47(9): 58-61. | 60 | 尉菁华, 刘欢, 连慧琴, 等. 棕榈酸/二氧化硅相变微胶囊的制备及性能研究[J]. 中国塑料, 2020, 34(2): 1-8. | 60 | WEI Jinghua, LIU Huan, LIAN Huiqin, et al. Preparation and performance of phase-change microcapsules based on palmitic acid core and silica shell[J]. China Plastics, 2020, 34(2): 1-8. | 61 | 张涛, 李宏伟, 王建明, 等. 端羟基聚丁二烯聚氨酯相变微胶囊的制备及其性能[J]. 纺织学报, 2018, 39(3): 86-91. | 61 | ZHANG Tao, LI Hongwei, WANG Jianming, Preparation and properties of hydroxyl-terminated polybutadiene phase-change polyurethane microcapsule[J]. Journal of Textile Research, 2018, 39(3): 86-91. | 62 | 刘晓庚, 谢亚桐. 微胶囊制备方法的比较[J]. 粮食与食品工业, 2005, 12(1): 28-30. | 62 | LIU Xiaogeng, XIE Yatong, Comparison of preparation methods of micro-encapsulation[J]. Cereal and Food Industry, 2005, 12(1): 28-30. | 63 | 郝敏, 李忠辉, 吴秋芳, 等.相变材料封装技术的研究进展[J]. 材料导报, 2014, 28(5): 98-103. | 63 | HAO Min, LI Zhonghui, WU Qiufang, et al. Research progress of encapsulation technology for phase change materials[J]. Materials Review, 2014, 28(5): 98-103. | 64 | GRAHAM M, SHCHUKINA E, DE CASTRO P F, et al. Nanocapsules containing salt hydrate phase change materials for thermal energy storage[J]. Journal of Materials Chemistry A, 2016, 4(43): 16906-16912. | 65 | 金波, 李明佳, 徐阳, 等. 双层填充床储热器储热性能实验研究[J]. 西安交通大学学报, 2018, 52(7): 80-86. | 65 | JIN Bo, LI Mingjia, XU Yang, et al. Experimental study on the thermal performance of a thermal storage with double-layered packed bed[J].Journal of Xi’an Jiaotong University, 2018, 52(7): 80-86. | 66 | 何兆禹. 斜温层相变蓄热实验研究[D]. 北京: 华北电力大学, 2019. | 66 | HE Zhaoyu. Experimental study on the thermocline storage tank with phase change material[D].Beijing: North China Electric Power University, 2019. | 67 | JIANG Z, LENG G, YE F, et al. Form-stable LiNO3-NaNO3-KNO3-Ca(NO3)2/calcium silicate composite phase change material (PCM) for mid-low temperature thermal energy storage[J]. Energy Conversion and Management, 2015, 106: 165-172. | 68 | 许永, 张叶龙, 赵伟杰, 等. 中高温复合相变储热材料的制备及性能研究[J]. 无机盐工业, 2018(5): 36-39. | 68 | XU Yong, ZHANG Yelong, ZHAO Weijie, et al. Research on preparation and performance of shape stable carbonate/chloride based composite phase change materials for medium and high temperature[J]. Inorganic Chemicals Industry, 2018(5): 36-39. | 69 | 李爱菊, 王毅, 张仁元. 无机盐/陶瓷基复合相变储能材料的研究进展[J]. 材料导报, 2007, 21(5): 29-31. | 69 | LI Aiju, WANG Yi, ZHANG Renyuan. Research development of inorganic salt/ceramic composite phase change energy storage material[J]. Materials Review, 2007, 21(5): 29-31. | 70 | 钱婷婷. 硅藻土基定形复合相变储能材料的制备与性能研究[D]. 北京: 中国地质大学, 2017. | 70 | QIAN Tingting. The preparation and characterization of a shape-stabilized composite phase change material of polyethylene glycol/diatomite with enhanced thermal performance[D]. Beijing: China University of Geosciences, 2017. | 71 | QIAN T T, LI J, WANG L, et al. Pore structure modified diatomite-supported PEG composites for thermal energy storage[J]. Scientific Reports, 2016, 6: 32392. | 72 | 李佳佳, 陆艺超, 叶光斗, 等. 纺丝原液原位合成相变材料微胶囊制备石蜡/PVA储能纤维[J]. 复合材料学报, 2012, 29(3): 79-84. | 72 | LI Jiajia, LU Yichao, YE Guangdou, et al. In-situ synthesis of energy storage paraffin/PVA fibre with phase change micro capsules in the spinning solution[J]. Acta Materiae Compositae Sinica, 2012, 29(3): 79-84. | 73 | 李昭, 叶光斗, 徐建军, 等. 聚乙二醇-聚乙烯醇相变储能纤维的制备及其性能[J]. 合成纤维, 2015, 44(7): 14-18. | 73 | LI Zhao, YE Guangdou, XU Jianjun, et al. Preparation and charaterization of polyethylene glycol-polyvinly alcohol thermal regulating fiber[J]. Synthetic Fiber in China, 2015, 44(7): 14-18. | 74 | CHEN C, WANG L, HUANG Y. Electrospinning of thermo-regulating ultrafine fibers based on polyethylene glycol/cellulose acetate composite[J]. Polymer, 2007, 48(18): 5202-5207. | 75 | 王丽娜. 纳米复合相变材料的制备及性能研究[D]. 兰州: 兰州理工大学, 2017. | 75 | WANG Lina. The study on preparation and performances of nano-composites phase change materials[D]. Lanzhou: Lanzhou University of Technology, 2017. | 76 | CUI Wenlong, YUAN Yanping, SUN Liangliang, et al. Experimental studies on the supercooling and melting/freezing characteristics of nano-copper/sodium acetate trihydrate composite phase change materials [J]. Renewable Energy, 2016, 99: 1029-1037. | 77 | WANG J, XIE H, XIN Z. Thermal properties of heat storage composites containing multiwalled carbon nanotubes[J]. Journal of Applied Physics, 2008: 104. | 78 | CHOI D H, LEE J, HONG H, et al. Thermal conductivity and heat transfer performance enhancement of phase change materials (PCM) containing carbon additives for heat storage application[J]. International Journal of Refrigeration, 2014, 42:112-120. | 79 | MYERS J P D, ALAM T, KALAM R. Nitrate salts doped with CuO nanoparticles for thermal energy storage with improved heat transfer[J]. Applied Energy, 2016, 165(1): 225-233. | 80 | MADATHIL P K, BALAGI N, SAHA P, et al. Preparation and characterization of molten salt based nanothermic fluids with enhanced thermal properties for solar thermal applications[J]. Applied Thermal Engineering, 2016, 109: 901-905. | 81 | BABAPOOR A, KARIMI G. Thermal properties measurement and heat storage analysis of paraffin nanoparticles composites phase change material: comparison and optimization[J]. Applied Thermal Engineering, 2015, 90: 945-951. | 82 | MUHAMMAD M D. Review of PCMS and heat transfer enhancement methods applied in parabolic trough solar plants thermal storage systems[J]. Nigerian Journal of Technology, 2018, 37(1): 96-107. | 83 | LI T X, WU D L, HE F, et al. Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2017, 115: 148-157. | 84 | WU Z G, ZHAO C Y. Experimental investigations of porous materials in high temperature thermal energy storage systems[J]. Solar Energy, 2011, 85: 1371-1380. | 85 | REN Y X, XU C, YUAN M D, et al. Ca(NO3)2-NaNO3/expanded graphite composite as a novel shape-stable phase change material for mid to high-temperature thermal energy storage[J]. Energy Conversion and Management, 2018, 163: 50-58. | 86 | 袁维烨, 章学来, 华维三, 等. 膨胀石墨/三水乙酸钠复合相变材料储热的性能[J]. 化工进展, 2018, 37(11): 4405-4411. | 86 | YUAN Weiye, ZHANG Xuelai, HUA Weisan, et al. Thermal storage performance of sodium acetate trihydrate/expanded graphite composite phase change material[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4405-4411. | 87 | GAO Liuhua, ZHAO Jun, AN Qingsong, et al. Experiments on thermal performance of erythritol/expanded graphite in a direct contact thermal energy storage container[J]. Applied Thermal Engineering, 2017, 113: 858-866. | 88 | WANG Yifei, WANG Liang, XIE Ninging, et al. Experimental study on the melting and solidification behavior of erythritol in a vertical shelland-tube latent heat thermal storage unit[J]. International Journal of Heat and Mass Transfer, 2016, 99: 770-781. | 89 | ZHAO D, TAN G. Numerical analysis of a shell-and-tube latent heat storage unit with fins for air-conditioning application[J] |
[1] |
XIAO Hui, ZHANG Xianjun, LAN Zhike, WANG Suhao, WANG Sheng.
Advances in flow and heat transfer research of liquid metal flowing across tube bundles
[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 10-20.
|
[2] |
ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai.
Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure
[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157.
|
[3] |
ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling.
Research progress of non-noble metal bifunctional catalysts in zinc-air batteries
[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286.
|
[4] |
HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing.
Research progress on preparation and sodium storage properties of tungsten disulfide composites
[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355.
|
[5] |
CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing.
Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system
[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503.
|
[6] |
DONG Jiayu, WANG Simin.
Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism
[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513.
|
[7] |
ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang.
Initializing distillation column simulation based on the improved constant heat transport model
[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558.
|
[8] |
SHI Yu, ZHAO Yunchao, FAN Zhixuan, JIANG Dahua.
Experimental study on the optimum phase change temperature of phase change roofs in hot summer and cold winter areas
[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4828-4836.
|
[9] |
BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan.
Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes
[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181.
|
[10] |
ZHANG Chao, YANG Peng, LIU Guanglin, ZHAO Wei, YANG Xufei, ZHANG Wei, YU Bo.
Influence of surface microstructure on arrayed microjet flow boiling heat transfer
[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4193-4203.
|
[11] |
WANG Jiansheng, ZHANG Huipeng, LIU Xueling, FU Yuguo, ZHU Jianxiao.
Analysis of flow and heat transfer characteristics in porous media reservoir
[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4212-4220.
|
[12] |
WANG Yungang, JIAO Jian, DENG Shifeng, ZHAO Qinxin, SHAO Huaishuang.
Experimental analysis of condensation heat transfer and synergistic desulfurization
[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4230-4237.
|
[13] |
TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming.
Research progress of phase change materials and their application systems for cool storage
[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339.
|
[14] |
SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun.
Numerical simulation of combustion of flame retardant epoxy resin
[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419.
|
[15] |
YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng.
B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance
[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd
|
|