Chemical Industry and Engineering Progress ›› 2017, Vol. 36 ›› Issue (05): 1743-1754.DOI: 10.16085/j.issn.1000-6613.2017.05.024
Previous Articles Next Articles
ZOU Deqiu, MA Xianfeng, LIU Xiaoshi, GUO Jiangrong, HU Zhigang, WANG Binghui
Received:
2016-10-17
Revised:
2017-01-16
Online:
2017-05-05
Published:
2017-05-05
邹得球, 马先锋, 刘小诗, 郭江荣, 胡志钢, 王炳辉
通讯作者:
邹得球(1981-),男,博士,副教授,主要从事相变储热材料及其强化传热研究。
作者简介:
邹得球(1981-),男,博士,副教授,主要从事相变储热材料及其强化传热研究。E-mail:zoudeqiu@nbu.edu.cn。
基金资助:
CLC Number:
ZOU Deqiu, MA Xianfeng, LIU Xiaoshi, GUO Jiangrong, HU Zhigang, WANG Binghui. Research progress on graphene in phase change materials[J]. Chemical Industry and Engineering Progress, 2017, 36(05): 1743-1754.
邹得球, 马先锋, 刘小诗, 郭江荣, 胡志钢, 王炳辉. 石墨烯在相变材料中的研究进展[J]. 化工进展, 2017, 36(05): 1743-1754.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2017.05.024
[1] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306:666-669. [2] LUKOWIAK Anna,KEDZIORA Anna,STREK Wieslaw. Antimicrobial graphene family materials:progress,advances,hopes and fears[J]. Advances in Colloid and Interface Science,2016,236:101-112. [3] TODA Kei,FURUE Ryo,HAYAMI Shinya. Recent progress in applications of graphene oxide for gas sensing:a review[J]. Analytica Chimica Acta,2015,878:43-53. [4] TJONG Sie Chin. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets[J]. Materials Science and Engineering:R:Reports,2013,74(10):281-350. [5] DAUD Muhammad,KAMAL Muhammad Shahzad,SHEHZAD Farrukh,et al. Graphene/layered double hydroxides nanocomposites:a review of recent progress in synthesis and applications[J]. Carbon,2016,104:241-252. [6] GENG J,KUAI L,KAN E,et al. Precious-metal-free Co-Fe-O/rGO synergetic electrocatalysts for oxygen evolution reaction by a facile hydrothermal route[J]. ChemSusChem,2015,8:659-664. [7] QU Z G,LI W Q,TAO W Q. Numerical model of the passive thermal management system for high-power lithium-ion battery by using porous metal foam saturated with phase change material[J]. International Journal of Hydrogen Energy,2014,39:3904 -3913. [8] WANG Zichen,ZHANG Zhuqian,JIA Li,et al. Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery[J]. Applied Thermal Engineering,2015,78:428-436. [9] SONG Qingwen,LI Yi,XING Jianwei. Thermal stability of composite phase change material microcapsules incorporated with silver nano-particles[J]. Polymer,2007,48:3317-3323. [10] OWOLABI Afolabi L,AL-KAYIEM Hussain H,BAHETA Aklilu T,et al. Nanoadditives induced enhancement of the thermal properties of paraffin-based nanocomposites for thermal energy storage[J]. Solar Energy,2016,135:644-653. [11] ALI M,EL-LEATHY A M,AL-SOFYANY Z. The effect of nanofluid concentration on the cooling system of vehicles radiator[J]. Adv. Mech. Eng.,2014,6:1-13. [12] NIEH H M,TENG T P,YU C C. Enhanced heat dissipation of a radiator using oxide nano-coolant[J]. Int. J. Therm. Sci,2014,77:252-261. [13] HERIS S Z,SHOKRGOZAR M,POORPHARHANG S,et al. Experimental study of heat transfer of a car radiator with CuO/ethylene glycol-water as a coolant[J]. J. Dispers. Sci. Technol.,2014,35:677-684. [14] TENG T P,CHENG C M,CHENG C P. Performance assessment of heat storage by phase change materials containing MWCNTs and graphite[J]. Applied Thermal Engineering,2013,50:637-644. [15] BALANDIN A A,GHOSH S,BAO W,et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8(3):902-907. [16] 谢超. 石墨烯增强相变材料导热性能的研究[D]. 南京:东南大学,2015. XIE C. The study on grapheme enhanced thermal conductivity of phase change materials[D]. Nanjing:Southeast University,2015. [17] HARISH Sivasankaran,OREJON Daniel,TAKATA Yasuyuki,et al. Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets[J]. Applied Thermal Engineering,2015,80:205-211. [18] FAN Li Wu,FANG Xin,WANG Xiao,et al. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials[J]. Applied Energy,2013,110:163-172. [19] FANG X,FAN L W,DING Q,et al. Increased thermal conductivity of eicosane-based composite phase change materials in the presence of grapheme nanoplatelets[J]. Energy Fuels,2013,27:4041-4047. [20] LI Hairong,JIANG Ming,LI Qi,et al. Aqueous preparation of polyethylene glycol/sulfonated graphene phase change composite with enhanced thermal performance[J]. Energy Conversion and Management,2013,75:482-487. [21] ZHONG Yajuan,ZHOU Mi,HUANG Fuqiang,et al. Effect of graphene aerogel on thermal behavior of phase change materials for thermal management[J]. Solar Energy Materials & Solar Cells,2013,113:195-200. [22] SHI Jianan,GER Mingder,LIU Yihming,et al. Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives[J]. Carbon,2013,51:365-372. [23] YANG Jie,QI Guoqiang,LIU Yang,et al. Hybrid graphene aerogels/phase change material composites:thermal conductivity,shape-stabilization and light-to-thermal energy storage[J]. Carbon,2016,100:693-702. [24] QI Guoqiang,YANG Jie,BAO Ruiying,et al. Enhanced comprehensive performance of polyethylene glycol based phase change materialwith hybrid graphene nanomaterials for thermal energy storage[J]. Carbon,2015,88:196-205. [25] WARZOHA Ronald J,FLEISCHER Amy S. Improved heat recovery from paraffin-based phase change materials due to the presence of percolating graphene networks[J]. International Journal of Heat and Mass Transfer,2014,79:314-323. [26] MEHRALI Mohammad,LATIBARI Sara Tahan,MEHRALI Mehdi,et al. Preparation and characterization of palmitic acid/grapheme nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material[J]. Applied Thermal Engineering,2013,61(2):633-640. [27] 丁晴,方昕,范利武,等. 不同二维纳米填料对复合相变材料热导率的影响[J]. 储能科学与技术,2014,3(3):250-254 DING Q,FANG X,FAN L W,et al. Influence of 2-D nanofillers on the thermal conductivity of composite PCMs[J]. Energy Storage Science and Technology,2014,3(3):250-254. [28] 胡娃萍. 高传热性有机相变材料的制备与性能研究[D].武汉:武汉理工大学,2012. HU W P. Studies on systhesis and properties of high thermal conductivity organic phase change materials[D]. Wuhan:Wuhan University of Technology,2012. [29] 丁晴. 石墨填料的形态和面向尺寸对复合相变材料传热特性影响的实验研究[D]. 杭州:浙江大学,2015. DING Q. An experimental investigation of the effects of graphite with various shapes and sizes on the heat transfer of composite phase change materials[D]. Hangzhou:Zhejiang University,2015. [30] MEHRALI Mohammad,LATIBARI Sara Tahan,MEHRALI Mehdi,et al. Preparation and properties of highly conductive palmitic acid/graphene oxide composites as thermal energy storage materials[J]. Energy,2013,58:628-634. [31] YUAN Yanping,ZHANG Nan,LI Tianyu,et al. Thermal performance enhancement of palmitic-stearic acid by adding graphene nanoplatelets and expanded graphite for thermal energy storage:a comparative study[J]. Energy,2016,97:488-497. [32] 丁晴,方昕,闫晨,等. 石墨纳米片尺寸对复合相变材料储热特性的影响[J]. 化工学报,2015,66(6):2024-2029. DING Q,FANG X,YAN C,et al. Effects of graphite nanosheet size on thermal storage property of composite PCMs[J]. CIESC Journal,2015,66(6):2024-2029. [33] WARZOHA Ronald J,FLEISCHER Amy S. Improved heat recovery from paraffin-based phase change materials dueto the presence of percolating graphene networks[J]. International Journal of Heat and Mass Transfer,2014,79:314-323. [34] FANG Xin,DING Qing,LI Liyi,et al. Tunable thermal conduction character of graphite-nanosheets-enhanced composite phase change materials via cooling rate control[J]. Energy Conversion and Management,2015,103:251-258. [35] LI Tingxian,LEE Juhyuk,WANG Ruzhu,et al. Heat transfer characteristics of phase change nanocomposite materials for thermal energy storage application[J]. International Journal of Heat and Mass Transfer,2014,75:1-11. [36] FAN Liwu,FANG Xin,WANG Xiao,et al. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials[J]. Applied Energy,2013,110:163-172. [37] TAO Y B,LIN C H,HE Y L. Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material[J]. Energy Conversion and Management,2015,97:103-110. [38] LIN J F,LU W,ZENG Y B,et al. Simultaneous enhancement of latent heat and thermal conductivity of docosane-based phase change material in the presence of spongy graphene[J]. Solar Energy Materials & Solar Cells,2014,28:48-51. [39] WARZOHA Ronald J,FLEISCHER Amy S. Improved heat recovery from paraffin-based phase change materials dueto the presence of percolating graphene networks[J]. International Journal of Heat and Mass Transfer,2014,79:314-323. [40] WANG Chongyun,FENG Lili,YANG Huazhe,et al. Graphene oxide stabilized polyethylene glycol for heat storage[J]. Physical Chemistry Chemical Physics,2012,14(38):13233-13238. [41] QI Guoqiang,LIANG Chenglu,BAO Ruiying,et al. Polyethylene glycol based shape-stabilized phase change material for thermal energy storage with ultra-low content of graphene oxide[J]. Solar Energy Materials & Solar Cells,2014,123:171-177. [42] 张兴祥,李树芹,陈赛,等. 聚二乙二醇十六烷基醚单丙烯酸酯/氧化石墨烯复合定型相变材料的制备及表征[J].天津工业大学学报,2016,35(2):1-5. ZHANG X X,LI S Q,CHEN S,et al. Preparation and characterization of poly(diethylene glycol hexadecyl ether acrylate)/graphene oxide composite shape-stabilized phase change materials[J]. Journal of Tianjin Polytechnic University,2016,35(2):1-5. [43] LI Benxia,LIU Tongxuan,HU Luyang,et al. Facile preparation and adjustable thermal property of stearic acid-grapheme oxide composite as shape-stabilized phase change material[J]. Chemical Engineering Journal,2013,s215/216(2):819-826. [44] XIONG Weilai,CHEN Yi,HAO Ming,et al. Facile synthesis of PEG based shape-stabilized phase change materials and their photo-thermal energy conversion[J]. Applied Thermal Engineering,2015,91:630-637. [45] MEHRALI Mohammad,LATIBARI Sara Tahan,MEHRALI Mehdi,et al. Preparation and characterization of palmitic acid/grapheme nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material[J]. Applied Thermal Engineering,2013,61:633-640. [46] SILAKHORIA Mahyar,FAUZIA Hadi,MAHMOUDIANA Mohammad R,et al. Preparation and thermal properties of form-stable phase changematerials composed of palmitic acid/polypyrrole/grapheme nanoplatelets[J]. Energy and Buildings,2015,99:189-195. [47] SHI Jianan,GER Mingder,LIU Yihming,et al. Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives[J]. Carbon,2013,51:365-372. [48] YE Shibing,ZHANG Qinglong,HU Dingding,et al. Core-shell-like structured graphene aerogel encapsulating paraffin:shape-stable phase change material for thermal energy storage[J]. Journal of Materials Chemistry A,2015,3:4018-4025. [49] HUANG Xinyu,XIA Wei,ZOU Ruqiang. Nanoconfinement of phase change materials within carbon aerogels:phase transition behaviours and photo-to-thermal energy storage[J]. Journal of Materials Chemistry A,2014,2:19963-19968. [50] 孙海燕.石墨烯基多功能超轻弹性气凝胶[D]. 杭州:浙江大学,2014. SUN H Y. Multifunctional ultra-flyweight elastic aerogels based on graphene[D]. Hangzhou:Zhejiang University,2014. [51] 李佳佳,陆艺超,叶光斗,等. 纺丝原液原位合成相变材料微胶囊制备石蜡/PVA储能纤维[J].复合材料学报,2012,29(3):79-83. LI J J,LU Y C,YE G D,et al. In-situ synthesis of energy storage paraffin/PVA fibre with phase change microcapsules in the spinning solution[J]. Acta Materiae Compositae Sinica,2012,29(3):79-83. [52] 王赫,王建平,王艳,等.加入改性石墨烯的聚甲基丙烯酸甲酯/正十八烷相变材料微胶囊的制备与表征[J]. 化工新型材料,2014,42(1):118-121. WANG H,WANG J P,WANG Y,et al. Preparation and characterization of microcapsules of graphite modified poly(methyl methacrylate)/n-octadecane phase change material[J]. New Chemical Materials,2014,42(1):118-121. [53] 王建川.氧化石墨烯/密胺树脂相变储热微胶囊的制备及性能研究[D]. 广州:华南理工大学,2015. WANG J C. Preparation and properties of graphene oxide/melamine resin phase change microcapsules[D]. Guangzhou:South China University of Technology,2015. [54] YUAN Kunjie,WANG Huichun,LIU Jian,et al. Novel slurry containing graphene oxide-grafted microencapsulated phase change material with enhanced thermo-physical properties and photo-thermal performance[J]. Solar Energy Materials&Solar Cells,2015,143: 29-37. [55] DAO Trung Dung,JEONG Han Mo. Novel stearic acid/grapheme core-shell composite microcapsule as a phase change material exhibiting high shape stability and performance[J]. Solar Energy Materials & Solar Cells,2015,137:227-234. [56] DAO Trung Dung,JEONG Han Mo. A pickering emulsion route to a stearic acid/graphene core-shell composite phase change material[J]. Carbon,2016,99:49-57. [57] STANKOVICH S,DIKIN D A,DOMMETT G H B,et al. Graphene-based composite materials[J]. Nature,2006,442(7100):282-286. [58] WANG Wei,WANG Chongyun,WANG Teng,et al. Enhancing the thermal conductivity of n-eicosane/silica phase change materials by reduced graphene oxide[J]. Materials Chemistry and Physics,2014,147:701-706. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | SHI Yu, ZHAO Yunchao, FAN Zhixuan, JIANG Dahua. Experimental study on the optimum phase change temperature of phase change roofs in hot summer and cold winter areas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4828-4836. |
[4] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[5] | ZHANG Chao, YANG Peng, LIU Guanglin, ZHAO Wei, YANG Xufei, ZHANG Wei, YU Bo. Influence of surface microstructure on arrayed microjet flow boiling heat transfer [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4193-4203. |
[6] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[7] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
[8] | ZHANG Yaojie, ZHANG Chuanxiang, SUN Yue, ZENG Huihui, JIA Jianbo, JIANG Zhendong. Application of coal-based graphene quantum dots in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4340-4350. |
[9] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[10] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[11] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[12] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[13] | ZHU Yajing, XU Yan, JIAN Meipeng, LI Haiyan, WANG Chongchen. Progress of metal-organic frameworks for uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029-3048. |
[14] | LIU Houli, GU Zhonghao, YANG Kang, ZHANG Li. Effect of groove width on pool boiling heat transfer characteristics in 3D printing groove structure [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2282-2288. |
[15] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |