1 |
蒋恩臣, 陈爱慧, 秦丽元,等. 木质素热解制备焦炭的试验研究[J]. 可再生能源, 2015, 33(7): 1066-1071.
|
|
JIANG Enchen, CHEN Aihui, QIN Liyuan, et al. Experimental study on char produced from lignin pyrolysis[J]. Renewable Energy Resources, 2015, 33(7): 1066-1071.
|
2 |
XI Y B, HUANG S, YANG D J, et al. Hierarchical porous carbon derived from the gas-exfoliation activation of lignin for high-energy lithium-ion batteries[J]. Green Chemistry, 2020, 22(13): 4321-4330.
|
3 |
ZHU J D, YAN C Y, ZHANG X, et al. A sustainable platform of lignin: from bioresources to materials and their applications in rechargeable batteries and supercapacitors[J]. Progress in Energy and Combustion Science, 2020, 76(1): 100788.
|
4 |
王欢, 杨东杰, 钱勇, 等. 木质素基功能材料的制备与应用研究进展[J]. 化工进展, 2019, 38(1): 434-448.
|
|
WANG Huan, YANG Dongjie, QIAN Yong, et al. Recent progress in the preparation and application of lignin-based functional materials[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 434-448.
|
5 |
NI J, WU Y T, TAO F, et al. A coenzyme-free biocatalyst for the value-added utilization of lignin-derived aromatics[J]. Journal of the American Chemical Society, 2018, 140(47): 16001-16005.
|
6 |
GARCÍA-NEGRÓN V, KIZZIRE D G, RIOS O, et al. Elucidating nano and meso-structures of lignin carbon composites: a comprehensive study of feedstock and temperature dependence[J]. Carbon, 2020, 161: 856-869.
|
7 |
ZHANG W L, LIN H B, LIN Z Q, et al. 3D hierarchical porous carbon for supercapacitors prepared from lignin through a facile template-free method[J]. ChemSusChem, 2015, 8(12): 2114-2122.
|
8 |
WU Y, CAO J P, HAO Z Q, et al. One-step preparation of alkaline lignin-based activated carbons with different activating agents for electric double layer capacitor[J]. International Journal of Electrochemical Science, 2017, 12(8): 7227-7239.
|
9 |
ZHAO X Y, CAO J P, MORISHITA K, et al. Electric double-layer capacitors from activated carbon derived from black liquor[J]. Energy & Fuels, 2010, 24(3): 1889-1893.
|
10 |
ZHANG W L, YIN J, LIN Z Q, et al. Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance[J]. Electrochimica Acta, 2015, 176(6): 1136-1142.
|
11 |
ZHANG W L, ZHAO M Z, LIU R Y, et al. Hierarchical porous carbon derived from lignin for high performance supercapacitor[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484: 518-527.
|
12 |
LOU R, MA R S, LIN K T, et al. Facile extraction of wheat straw by deep eutectic solvent (DES) to produce lignin nanoparticles[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10248-10256.
|
13 |
KUMAR A K, PARIKH B S, PRAVAKAR M . et al. Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue[J]. Environmental Science and Pollution Research International, 2016, 23(10): 9265-9279.
|
14 |
LYU G J, WU Q, LI T F, et al. Thermochemical properties of lignin extracted from willow by deep eutectic solvents (DES)[J]. Cellulose, 2019, 26(15): 8501-8511.
|
15 |
席跃宾. 木质素基多孔炭微结构的构筑及其储锂性能研究[D]. 广州: 华南理工大学, 2019.
|
|
XI Yuebin. Microstructure construction and storage lithium performance of lignin-based porous carbon[D]. Guangzhou: South China University of Technology, 2019.
|
16 |
张肖肖, 娄瑞, 董继先, 等. 深度共熔溶剂应用于松木类木质素分离的研究[J]. 陕西科技大学学报(自然科学版), 2019, 37(6): 13-18.
|
|
ZHANG Xiaoxiao, LOU Rui, DONG Jixian, et al. Study on the separation of lignin from pine biomass based on deep eutectic solvent[J]. Journal of Shaanxi University of Science & Technology (Natural Science Edition), 2019, 37(6): 13-18.
|
17 |
DILEO R, LANDI B, RAFFAELLE R. Application of the G'/D Raman ratio for purity assessment of multi-walled carbon nanotubes[J]. MRS Online Proceedings Library, 2007, 1018(1): 1-6.
|
18 |
MAGHSOUMI A, BRAMBILLA L, CASTIGLIONI C, et al. Overtone and combination features of G and D peaks in resonance Raman spectroscopy of the C78H26 polycyclic aromatic hydrocarbon[J]. Journal of Raman Spectroscopy, 2015, 46(9): 757-764.
|
19 |
HONG J, PARK M K, LEE E J, et al. Origin of new broad Raman D and G peaks in annealed graphene[J]. Scientific Reports, 2013, 3(1): 2700.
|
20 |
MONTOYA P, MARÍN T, MEJÍA S, et al. Elucidation of the mechanism of electrochemical formation of magnetite nanoparticles by in situ raman spectroscopy[J]. Journal of the Electrochemical Society, 2017, 164(14): D1056-D1065.
|
21 |
MORGA R, JELONEK I, KRUSZEWSKA K, et al. Relationships between quality of coals, resulting cokes, and micro-Raman spectral characteristics of these cokes[J]. International Journal of Coal Geology, 2015, 144/145(5): 130-137.
|
22 |
ZHANG G Z, LEI B M, CHEN S M, et al. Activated carbon adsorbents with micro-mesoporous structure derived from waste biomass by stepwise activation for toluene removal from air[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105387.
|
23 |
XI Y B, YANG D J, LIU W F, et al. Preparation of porous lignin-derived carbon/carbon nanotube composites by hydrophobic self-assembly and carbonization to enhance lithium storage capacity[J]. Electrochimica Acta, 2019, 303(5): 1-8.
|
24 |
潘学峰, 顾五洲. ZnCl2活化法多孔炭材料及其吸附性能研究[J]. 化学工程与装备, 2020, 4(7): 12-14.
|
|
PAN Xuefeng, GU Wuzhou. Study on porous carbon materials and their adsorption properties by ZnCl2 activation method[J]. Chemical Engineering & Equipment, 2020, 4(7): 12-14.
|
25 |
MEN’SHCHIKOV I E, SHKOLIN A V, STRIZHENOV E M, et al. Thermodynamic behaviors of adsorbed methane storage systems based on nanoporous carbon adsorbents prepared from coconut shells[J]. Nanomaterials, 2020, 10(11): 2243-2243.
|
26 |
林文胜, 王欢, 杨东杰, 等. 木质素碳/氧化锌复合材料的制备及其光催化性能[J]. 高校化学工程学报, 2018, 32(3): 636-645.
|
|
LIN Wensheng, WANG Huan, YANG Dongjie, et al. Preparation of lignin-based carbon/zinc oxide composites and their photocatalytic performance[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(3): 636-645.
|
27 |
CAO M L, WANG Q X, CHENG W L, et al. A novel strategy combining electrospraying and one-step carbonization for the preparation of ultralight honeycomb-like multilayered carbon from biomass-derived lignin[J]. Carbon, 2021, 179(5): 68-79.
|
28 |
ARROYO-GÓMEZ J J, VILLARROEL-ROCHA D, DE FREITAS-ARAÚJO K C, et al. Applicability of activated carbon obtained from peach stone as an electrochemical sensor for detecting caffeine[J]. Journal of Electroanalytical Chemistry, 2018, 822(5): 171-176.
|
29 |
李继辉, 孙康, 宋曜光, 等. 木质素基炭纳米片的制备及其电化学性能[J]. 林产化学与工业, 2019, 39(1): 67-74.
|
|
LI Jihui, SUN Kang, SONG Yaoguang, et al. Preparation of lignin-based carbon nanosheet and its electrochemical property[J]. Chemistry and Industry of Forest Products, 2019, 39(1): 67-74.
|
30 |
DAI Z, REN P G, HE W W, et al. Boosting the electrochemical performance of nitrogen-oxygen co-doped carbon nanofibers based supercapacitors through esterification of lignin precursor[J]. Renewable Energy, 2020, 162(12): 613-623.
|
31 |
CHAROENSOOK K, HUANG C L, TAI H C, et al. Preparation of porous nitrogen-doped activated carbon derived from rice straw for high-performance supercapacitor application[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021,120(3): 246-256.
|
32 |
ZOU L, QIAO Y, ZHONG C Y, et al. Enabling fast electron transfer through both bacterial outer-membrane redox centers and endogenous electron mediators by polyaniline hybridized large-mesoporous carbon anode for high-performance microbial fuel cells[J]. Electrochimica Acta, 2017, 229(6): 31-38.
|
33 |
袁康帅, 郭大亮, 张子明, 等. 碱木质素基多孔炭材料的制备及其在超级电容器中的应用[J]. 中国造纸, 2019, 38(6): 47-53.
|
|
YUAN Kangshuai, GUO Daliang, ZHANG Ziming, et al. Preparation of alkali lignin-based porous carbon material and its application in supercapacitors[J]. China Pulp &Paper, 2019, 38(6): 47-53.
|